Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis

光催化 材料科学 表面等离子共振 异质结 可见光谱 反应速率常数 降级(电信) 光化学 等离子体子 电子顺磁共振 光致发光 化学工程 催化作用 光电子学 纳米颗粒 纳米技术 动力学 化学 电子工程 有机化学 量子力学 物理 工程类 核磁共振
作者
Feihu Mu,Benlin Dai,Wei Zhao,Shijian Zhou,Haibao Huang,Gang Yang,Dehua Xia,Yan Kong,Dennis Y.C. Leung
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:101: 37-48 被引量:75
标识
DOI:10.1016/j.jmst.2021.05.059
摘要

To boost the visible light catalytic performance of typical metal-organic frameworks (MOFs) materials (MIL-68(In)-NH2), a novel stable Z-scheme Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic photocatalyst was constructed by electrostatic attraction, co-precipitation reaction, and in-situ photoreduction reaction methods for the first time. The photocatalytic activities of the photocatalysts are systematically explored by the photocatalytic degradation of bisphenol A (BPA) and reduction of Cr(VI) under visible light. Ag/Ag3PO4/MIL-68(In)-NH2 displays the best photocatalytic performance among the as-prepared photocatalysts. The rate constant of BPA degradation on Ag/Ag3PO4/MIL-68(In)-NH2 is 0.09655 min−1, which is better than many reported photocatalytic materials. It also achieved a maximum rate constant of 0.02074 min−1 for Cr(VI) reduction. The boosted photocatalytic performance is due to the improved absorption caused by localized surface plasmon resonance (LSPR), effective interface charge transfer and separation, and more reactive sites provided by the large specific surface area. Besides, the photocatalytic degradation pathway of BPA is concluded according to GC-MS analysis. Finally, a more reasonable Z-scheme mechanism is speculated and verified through a series of characterizations and simulations, such as time-resolved photoluminescence spectroscopy (TRPL), electron spin resonance (ESR), and finite difference time domain (FDTD) method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
remake441发布了新的文献求助10
刚刚
威威111关注了科研通微信公众号
刚刚
文静的柠檬完成签到,获得积分10
1秒前
一个奎发布了新的文献求助10
1秒前
2秒前
奋斗的雪曼完成签到,获得积分10
2秒前
2秒前
活力安南发布了新的文献求助50
3秒前
狗狗碎碎完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
自然的霸完成签到,获得积分10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
cyb发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得50
6秒前
6秒前
Wind应助科研通管家采纳,获得10
6秒前
hans应助科研通管家采纳,获得10
6秒前
shhoing应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Ming完成签到,获得积分10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
老小孩完成签到 ,获得积分10
6秒前
关关过应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
wuzhenwei应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
小香菇完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545750
求助须知:如何正确求助?哪些是违规求助? 4631794
关于积分的说明 14622444
捐赠科研通 4573504
什么是DOI,文献DOI怎么找? 2507566
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455544