Tri-Branch Convolutional Neural Networks for Top-k Focused Academic Performance Prediction

杠杆(统计) 计算机科学 卷积神经网络 机器学习 人工智能 性能预测 建筑 深度学习 排名(信息检索) 人工神经网络 绩效改进 数据挖掘 模拟 艺术 运营管理 经济 视觉艺术
作者
Chaoran Cui,Jian Zong,Yuling Ma,Xinhua Wang,Lei Guo,Meng Chen,Yilong Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 439-450 被引量:5
标识
DOI:10.1109/tnnls.2022.3175068
摘要

Academic performance prediction aims to leverage student-related information to predict their future academic outcomes, which is beneficial to numerous educational applications, such as personalized teaching and academic early warning. In this article, we reveal the students' behavior trajectories by mining campus smartcard records, and capture the characteristics inherent in trajectories for academic performance prediction. Particularly, we carefully design a tri-branch convolutional neural network (CNN) architecture, which is equipped with rowwise, columnwise, and depthwise convolutions and attention operations, to effectively capture the persistence, regularity, and temporal distribution of student behavior in an end-to-end manner, respectively. However, different from existing works mainly targeting at improving the prediction performance for the whole students, we propose to cast academic performance prediction as a top-k ranking problem, and introduce a top-k focused loss to ensure the accuracy of identifying academically at-risk students. Extensive experiments were carried out on a large-scale real-world dataset, and we show that our approach substantially outperforms recently proposed methods for academic performance prediction. For the sake of reproducibility, our codes have been released at https://github.com/ZongJ1111/Academic-Performance-Prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hhy发布了新的文献求助10
1秒前
故意的傲玉应助结实煎饼采纳,获得200
2秒前
乐观的一一完成签到,获得积分10
2秒前
zwzw1314完成签到,获得积分10
2秒前
001发布了新的文献求助10
3秒前
FFFFFFF应助平淡南霜采纳,获得10
3秒前
Mottri发布了新的文献求助10
3秒前
4秒前
yangyang发布了新的文献求助10
4秒前
冷酷尔琴完成签到,获得积分10
4秒前
科研通AI5应助aaaaaa采纳,获得10
4秒前
顾矜应助清脆的台灯采纳,获得10
5秒前
单薄凌蝶发布了新的文献求助50
5秒前
5秒前
羊羊爱吃羊羊完成签到 ,获得积分10
6秒前
6秒前
Akim应助BOSSJING采纳,获得10
6秒前
纸上彩虹发布了新的文献求助10
7秒前
volzzz完成签到,获得积分10
7秒前
7秒前
大胆砖头完成签到 ,获得积分10
7秒前
小蘑菇应助强健的月饼采纳,获得10
8秒前
8秒前
神揽星辰入梦完成签到,获得积分10
8秒前
吾日三省吾身完成签到 ,获得积分10
8秒前
自爱悠然完成签到,获得积分10
9秒前
9秒前
10秒前
呆瓜完成签到,获得积分10
11秒前
布丁完成签到,获得积分10
11秒前
朴素的士晋完成签到,获得积分10
11秒前
燕尔蓝发布了新的文献求助10
11秒前
我是王浩腾我是健身王完成签到,获得积分10
12秒前
12秒前
杰克李李发布了新的文献求助10
12秒前
wjs0406发布了新的文献求助10
12秒前
老李完成签到,获得积分10
12秒前
落寞寒荷完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740