Genome structural variation in human evolution

生物 结构变异 基因组 拷贝数变化 进化生物学 遗传学 适应(眼睛) 人类进化 个人基因组学 人类遗传变异 DNA测序 基因 计算生物学 人类基因组 神经科学
作者
Edward J. Hollox,Luciana W. Zuccherato,Serena Tucci
出处
期刊:Trends in Genetics [Elsevier BV]
卷期号:38 (1): 45-58 被引量:52
标识
DOI:10.1016/j.tig.2021.06.015
摘要

There has been an explosion in knowledge of structural variants through analysis of short-read sequencing in large population cohorts. Long-read sequencing technology is dramatically improving our ability to detect and genotype structural variants, particularly in complex repeat-rich regions. Structural variants are important in neurological changes involved in human evolution. Structural variants have mediated population-specific human adaptations to diet and infectious disease exposure. Introgression from archaic hominins has contributed structural variants to modern human populations. Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV. Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV. acquisition of variants from archaic hominins that have enabled adaptation in new environments. a variant that is correlated with levels of mRNA of a particular gene in a particular tissue or cell type. change in allele frequency from one generation to the next because of random variation in offspring number between different individuals in a finite population. a protein made of two different subunits. a protein made of two identical subunits. two identical alleles that have arisen from a single mutational event. Segments of identity by descent are genomic regions over which a pair of individuals share a haplotype due to inheritance from a recent common ancestor. two identical alleles that have arisen in different mutational events. using the information from the known haplotypes present in a population to infer a genotype at a locus. acquisition of variants from archaic humans. the nonrandom association of alleles at two or more loci. a copy number variant with more than one allele in the population; usually, each allele consists of a variable number of tandem repeats. evolution by retaining juvenile features in the adult, often by slowing or delaying particular developmental processes. a mutational process whereby unequal crossing over during meiosis between similar DNA sequences generates deletions or duplications. Also known as ‘ectopic recombination.’ determining the haplotype of multiple alleles from diploid genotypes. sections of DNA that map to at least two different genomic locations. Originally coined to distinguish shorter interspersed duplications from whole-genome duplications. specific single nucleotides in the genome that differ between members of the same species; for example, in some human genomes, it could be an A, in others a C. essentially synonymous with SNVs but sometimes used to imply a common SNV in a population: An SNP is an SNV that occurs at >1% frequency in a specific population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李一琳完成签到,获得积分10
3秒前
cumtxzs发布了新的文献求助10
3秒前
3秒前
冷酷的问晴完成签到,获得积分10
3秒前
4秒前
4秒前
清爽凝阳发布了新的文献求助20
4秒前
勤恳绝义发布了新的文献求助10
5秒前
5秒前
天骄928完成签到,获得积分10
5秒前
5秒前
5秒前
晴小阳完成签到,获得积分10
5秒前
6秒前
Criminology34应助whlgyjh采纳,获得10
6秒前
斯文鸡完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
mulidexin2021完成签到,获得积分10
7秒前
Ava应助五山第一院士采纳,获得10
7秒前
云清完成签到,获得积分10
7秒前
蛋蛋发布了新的文献求助10
8秒前
dameng139发布了新的文献求助30
8秒前
chenqiumu应助刘小九采纳,获得30
9秒前
9秒前
MQ_sun完成签到,获得积分10
9秒前
烟花应助XYNW采纳,获得10
10秒前
NexusExplorer应助KOBEH采纳,获得10
10秒前
10秒前
Huang发布了新的文献求助10
10秒前
追光者完成签到,获得积分10
11秒前
虚心蜗牛完成签到 ,获得积分10
11秒前
隐形曼青应助wut采纳,获得30
12秒前
司空豁发布了新的文献求助10
12秒前
13秒前
zlk发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283636
求助须知:如何正确求助?哪些是违规求助? 4437415
关于积分的说明 13813418
捐赠科研通 4318122
什么是DOI,文献DOI怎么找? 2370293
邀请新用户注册赠送积分活动 1365614
关于科研通互助平台的介绍 1329113