Strengthened structure–function relationships of the corticospinal tract by free water correction after stroke

皮质脊髓束 磁刺激 磁共振弥散成像 部分各向异性 物理医学与康复 冲程(发动机) 白质 心理学 神经科学 锥体束 磁共振成像 医学 刺激 放射科 物理 热力学
作者
Stephanie Guder,Ofer Pasternak,Christian Gerloff,Robert Schulz
出处
期刊:Brain communications [Oxford University Press]
卷期号:3 (2) 被引量:9
标识
DOI:10.1093/braincomms/fcab034
摘要

Abstract The corticospinal tract is the most intensively investigated tract of the human motor system in stroke rehabilitative research. Diffusion-tensor-imaging gives insights into its microstructure, and transcranial magnetic stimulation assesses its excitability. Previous data on the interrelationship between both measures are contradictory. Correlative or predictive models which associate them with motor outcome are incomplete. Free water correction has been developed to enhance diffusion-tensor-imaging by eliminating partial volume with extracellular water, which could improve capturing stroke-related microstructural alterations, thereby also improving structure-function relationships in clinical cohorts. In the present cross-sectional study, data of 18 chronic stroke patients and 17 healthy controls, taken from a previous study on cortico-cerebellar motor tracts, were re-analysed: The data included diffusion-tensor-imaging data quantifying corticospinal tract microstructure with and without free water correction, transcranial magnetic stimulation data assessing recruitment curve properties of motor evoked potentials and detailed clinical data. Linear regression modelling was used to interrelate corticospinal tract microstructure, recruitment curves properties and clinical scores. The main finding of the present study was that free water correction substantially strengthens structure-function associations in stroke patients: Specifically, our data evidenced a significant association between fractional anisotropy of the ipsilesional corticospinal tract and its excitability (P = 0.001, adj. R2 = 0.54), with free water correction explaining additional 20% in recruitment curve variability. For clinical scores, only free water correction leads to the reliable detection of significant correlations between ipsilesional corticospinal tract fractional anisotropy and residual grip (P = 0.001, adj. R2 = 0.70) and pinch force (P < 0.001, adj. R2 = 0.72). Finally, multimodal models can be improved by free water correction as well. This study evidences that corticospinal tract microstructure directly relates to its excitability in stroke patients. It also shows that unexplained variance in motor outcome is considerably reduced by free water correction arguing that it might serve as a powerful tool to improve existing models of structure-function associations and potentially also outcome prediction after stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MXG发布了新的文献求助10
刚刚
1秒前
楼少博完成签到,获得积分10
1秒前
2秒前
3秒前
冷面发布了新的文献求助10
3秒前
4秒前
5秒前
Re发布了新的文献求助10
5秒前
lll发布了新的文献求助10
5秒前
科研通AI5应助段以柳采纳,获得10
6秒前
6秒前
7秒前
7秒前
newwen发布了新的文献求助10
8秒前
17ayyy发布了新的文献求助10
8秒前
研友_ZGRvon发布了新的文献求助10
9秒前
积极的若山完成签到,获得积分10
10秒前
天真的之柔完成签到,获得积分20
10秒前
彭于晏应助周杰伦啦啦采纳,获得10
10秒前
细心寒凡发布了新的文献求助10
11秒前
酷波er应助侯悦茹采纳,获得30
12秒前
Doctor_wan89发布了新的文献求助10
13秒前
13秒前
科研通AI5应助小闫同学采纳,获得10
13秒前
14秒前
英俊的铭应助pokexuejiao采纳,获得30
14秒前
小马甲应助这小猪真帅采纳,获得10
14秒前
无花果应助诚心的焱采纳,获得10
14秒前
14秒前
14秒前
灵犀完成签到 ,获得积分10
16秒前
完美世界应助细心寒凡采纳,获得10
18秒前
研友_ZGRvon完成签到,获得积分0
19秒前
19秒前
害羞的小刺猬完成签到,获得积分10
20秒前
光亮青柏发布了新的文献求助20
20秒前
20秒前
科研民工完成签到,获得积分10
20秒前
Doctor_wan89完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916646
求助须知:如何正确求助?哪些是违规求助? 4190063
关于积分的说明 13013239
捐赠科研通 3959493
什么是DOI,文献DOI怎么找? 2170751
邀请新用户注册赠送积分活动 1188815
关于科研通互助平台的介绍 1096866