Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study

医学 慢性阻塞性肺病 可穿戴计算机 可穿戴技术 队列 急诊医学 机器学习 人工智能 物理疗法 内科学 计算机科学 嵌入式系统
作者
Chia‐Tung Wu,Guo-Hung Li,Chun‐Ta Huang,Yu‐Chieh Cheng,Chi‐Hsien Chen,Jung‐Yien Chien,Ping‐Hung Kuo,Lu-Cheng Kuo,Feipei Lai
出处
期刊:Jmir mhealth and uhealth [JMIR Publications]
卷期号:9 (5): e22591-e22591 被引量:78
标识
DOI:10.2196/22591
摘要

Background The World Health Organization has projected that by 2030, chronic obstructive pulmonary disease (COPD) will be the third-leading cause of mortality and the seventh-leading cause of morbidity worldwide. Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are associated with an accelerated decline in lung function, diminished quality of life, and higher mortality. Accurate early detection of acute exacerbations will enable early management and reduce mortality. Objective The aim of this study was to develop a prediction system using lifestyle data, environmental factors, and patient symptoms for the early detection of AECOPD in the upcoming 7 days. Methods This prospective study was performed at National Taiwan University Hospital. Patients with COPD that did not have a pacemaker and were not pregnant were invited for enrollment. Data on lifestyle, temperature, humidity, and fine particulate matter were collected using wearable devices (Fitbit Versa), a home air quality–sensing device (EDIMAX Airbox), and a smartphone app. AECOPD episodes were evaluated via standardized questionnaires. With these input features, we evaluated the prediction performance of machine learning models, including random forest, decision trees, k-nearest neighbor, linear discriminant analysis, and adaptive boosting, and a deep neural network model. Results The continuous real-time monitoring of lifestyle and indoor environment factors was implemented by integrating home air quality–sensing devices, a smartphone app, and wearable devices. All data from 67 COPD patients were collected prospectively during a mean 4-month follow-up period, resulting in the detection of 25 AECOPD episodes. For 7-day AECOPD prediction, the proposed AECOPD predictive model achieved an accuracy of 92.1%, sensitivity of 94%, and specificity of 90.4%. Receiver operating characteristic curve analysis showed that the area under the curve of the model in predicting AECOPD was greater than 0.9. The most important variables in the model were daily steps walked, stairs climbed, and daily distance moved. Conclusions Using wearable devices, home air quality–sensing devices, a smartphone app, and supervised prediction algorithms, we achieved excellent power to predict whether a patient would experience AECOPD within the upcoming 7 days. The AECOPD prediction system provided an effective way to collect lifestyle and environmental data, and yielded reliable predictions of future AECOPD events. Compared with previous studies, we have comprehensively improved the performance of the AECOPD prediction model by adding objective lifestyle and environmental data. This model could yield more accurate prediction results for COPD patients than using only questionnaire data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
未知发布了新的文献求助10
1秒前
1秒前
高媛完成签到,获得积分20
2秒前
yelaikuhun74发布了新的文献求助10
2秒前
蒋一发布了新的文献求助10
3秒前
qianqina发布了新的文献求助10
3秒前
3秒前
qise应助管夜白采纳,获得10
3秒前
乔呀完成签到,获得积分10
3秒前
xixi完成签到,获得积分20
4秒前
4秒前
Vivian完成签到,获得积分10
4秒前
4秒前
班玮越发布了新的文献求助10
4秒前
要增肥的樱完成签到,获得积分10
5秒前
科研通AI5应助雨碎寒江采纳,获得10
5秒前
liucheng完成签到,获得积分10
5秒前
6秒前
FashionBoy应助寒月如雪采纳,获得10
6秒前
qin发布了新的文献求助10
7秒前
7秒前
一年5篇发布了新的文献求助10
7秒前
明亮的小蘑菇完成签到 ,获得积分10
7秒前
chenk完成签到,获得积分10
7秒前
如意猕猴桃完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
12365发布了新的文献求助10
9秒前
科研通AI5应助Leoniko采纳,获得10
10秒前
10秒前
给我点光环完成签到,获得积分10
10秒前
米修完成签到 ,获得积分10
10秒前
JamesPei应助kay采纳,获得10
10秒前
拾梦完成签到,获得积分10
11秒前
大个应助干净柏柳采纳,获得10
11秒前
科研通AI2S应助lsy采纳,获得10
11秒前
12秒前
聪明的采枫完成签到,获得积分20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403