Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study

医学 慢性阻塞性肺病 可穿戴计算机 可穿戴技术 队列 急诊医学 机器学习 人工智能 物理疗法 内科学 计算机科学 嵌入式系统
作者
Chia‐Tung Wu,Guo-Hung Li,Chun‐Ta Huang,Yu‐Chieh Cheng,Chi‐Hsien Chen,Jung‐Yien Chien,Ping‐Hung Kuo,Lu-Cheng Kuo,Feipei Lai
出处
期刊:Jmir mhealth and uhealth [JMIR Publications Inc.]
卷期号:9 (5): e22591-e22591 被引量:78
标识
DOI:10.2196/22591
摘要

Background The World Health Organization has projected that by 2030, chronic obstructive pulmonary disease (COPD) will be the third-leading cause of mortality and the seventh-leading cause of morbidity worldwide. Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are associated with an accelerated decline in lung function, diminished quality of life, and higher mortality. Accurate early detection of acute exacerbations will enable early management and reduce mortality. Objective The aim of this study was to develop a prediction system using lifestyle data, environmental factors, and patient symptoms for the early detection of AECOPD in the upcoming 7 days. Methods This prospective study was performed at National Taiwan University Hospital. Patients with COPD that did not have a pacemaker and were not pregnant were invited for enrollment. Data on lifestyle, temperature, humidity, and fine particulate matter were collected using wearable devices (Fitbit Versa), a home air quality–sensing device (EDIMAX Airbox), and a smartphone app. AECOPD episodes were evaluated via standardized questionnaires. With these input features, we evaluated the prediction performance of machine learning models, including random forest, decision trees, k-nearest neighbor, linear discriminant analysis, and adaptive boosting, and a deep neural network model. Results The continuous real-time monitoring of lifestyle and indoor environment factors was implemented by integrating home air quality–sensing devices, a smartphone app, and wearable devices. All data from 67 COPD patients were collected prospectively during a mean 4-month follow-up period, resulting in the detection of 25 AECOPD episodes. For 7-day AECOPD prediction, the proposed AECOPD predictive model achieved an accuracy of 92.1%, sensitivity of 94%, and specificity of 90.4%. Receiver operating characteristic curve analysis showed that the area under the curve of the model in predicting AECOPD was greater than 0.9. The most important variables in the model were daily steps walked, stairs climbed, and daily distance moved. Conclusions Using wearable devices, home air quality–sensing devices, a smartphone app, and supervised prediction algorithms, we achieved excellent power to predict whether a patient would experience AECOPD within the upcoming 7 days. The AECOPD prediction system provided an effective way to collect lifestyle and environmental data, and yielded reliable predictions of future AECOPD events. Compared with previous studies, we have comprehensively improved the performance of the AECOPD prediction model by adding objective lifestyle and environmental data. This model could yield more accurate prediction results for COPD patients than using only questionnaire data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助ZHY2023采纳,获得10
刚刚
1秒前
陈尹蓝发布了新的文献求助10
1秒前
yellow完成签到,获得积分10
1秒前
乐乐应助灰光呀采纳,获得10
1秒前
a1关闭了a1文献求助
1秒前
深情安青应助33采纳,获得10
1秒前
Evan应助山雨采纳,获得10
4秒前
ding应助li采纳,获得10
5秒前
传奇3应助恋上鱼的猫采纳,获得30
6秒前
9秒前
orixero应助爱学习的鼠鼠采纳,获得10
9秒前
复杂外套关注了科研通微信公众号
9秒前
领导范儿应助LuckyCookie采纳,获得10
10秒前
陌小千完成签到 ,获得积分10
10秒前
阿冰发布了新的文献求助10
13秒前
13秒前
wu发布了新的文献求助10
14秒前
wzwer123发布了新的文献求助10
14秒前
16秒前
17秒前
禁止通行完成签到,获得积分10
18秒前
完美世界应助阳光的梦寒采纳,获得10
18秒前
19秒前
LBJ完成签到,获得积分20
19秒前
Ziyi_Xu发布了新的文献求助10
19秒前
21秒前
loski发布了新的文献求助10
21秒前
斯文败类应助ljy采纳,获得10
22秒前
活力镜子关注了科研通微信公众号
22秒前
a1关闭了a1文献求助
22秒前
阳和启蛰完成签到,获得积分10
24秒前
jfuU发布了新的文献求助200
24秒前
wzwer123完成签到,获得积分20
25秒前
27秒前
27秒前
28秒前
MeOH拿桶接完成签到 ,获得积分10
29秒前
fei完成签到,获得积分10
31秒前
水阔鱼沉完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153624
求助须知:如何正确求助?哪些是违规求助? 2804769
关于积分的说明 7861576
捐赠科研通 2462781
什么是DOI,文献DOI怎么找? 1310981
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809