清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study

医学 慢性阻塞性肺病 可穿戴计算机 可穿戴技术 恶化 队列 急诊医学 机器学习 人工智能 物理疗法 内科学 计算机科学 嵌入式系统
作者
Chia‐Tung Wu,Guo-Hung Li,Chun‐Ta Huang,Yu‐Chieh Cheng,Chi‐Hsien Chen,Jung‐Yien Chien,Ping‐Hung Kuo,Lu-Cheng Kuo,Feipei Lai
出处
期刊:Jmir mhealth and uhealth [JMIR Publications]
卷期号:9 (5): e22591-e22591 被引量:123
标识
DOI:10.2196/22591
摘要

Background The World Health Organization has projected that by 2030, chronic obstructive pulmonary disease (COPD) will be the third-leading cause of mortality and the seventh-leading cause of morbidity worldwide. Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are associated with an accelerated decline in lung function, diminished quality of life, and higher mortality. Accurate early detection of acute exacerbations will enable early management and reduce mortality. Objective The aim of this study was to develop a prediction system using lifestyle data, environmental factors, and patient symptoms for the early detection of AECOPD in the upcoming 7 days. Methods This prospective study was performed at National Taiwan University Hospital. Patients with COPD that did not have a pacemaker and were not pregnant were invited for enrollment. Data on lifestyle, temperature, humidity, and fine particulate matter were collected using wearable devices (Fitbit Versa), a home air quality–sensing device (EDIMAX Airbox), and a smartphone app. AECOPD episodes were evaluated via standardized questionnaires. With these input features, we evaluated the prediction performance of machine learning models, including random forest, decision trees, k-nearest neighbor, linear discriminant analysis, and adaptive boosting, and a deep neural network model. Results The continuous real-time monitoring of lifestyle and indoor environment factors was implemented by integrating home air quality–sensing devices, a smartphone app, and wearable devices. All data from 67 COPD patients were collected prospectively during a mean 4-month follow-up period, resulting in the detection of 25 AECOPD episodes. For 7-day AECOPD prediction, the proposed AECOPD predictive model achieved an accuracy of 92.1%, sensitivity of 94%, and specificity of 90.4%. Receiver operating characteristic curve analysis showed that the area under the curve of the model in predicting AECOPD was greater than 0.9. The most important variables in the model were daily steps walked, stairs climbed, and daily distance moved. Conclusions Using wearable devices, home air quality–sensing devices, a smartphone app, and supervised prediction algorithms, we achieved excellent power to predict whether a patient would experience AECOPD within the upcoming 7 days. The AECOPD prediction system provided an effective way to collect lifestyle and environmental data, and yielded reliable predictions of future AECOPD events. Compared with previous studies, we have comprehensively improved the performance of the AECOPD prediction model by adding objective lifestyle and environmental data. This model could yield more accurate prediction results for COPD patients than using only questionnaire data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
川川完成签到 ,获得积分10
27秒前
老迟到的友桃完成签到 ,获得积分10
34秒前
sweetrumors完成签到,获得积分10
37秒前
em0发布了新的文献求助30
44秒前
55秒前
ldtbest0525发布了新的文献求助10
1分钟前
酷酷的数据线完成签到,获得积分10
1分钟前
em0完成签到,获得积分10
1分钟前
lx发布了新的文献求助10
1分钟前
专一的忆寒完成签到,获得积分10
2分钟前
lx完成签到 ,获得积分20
2分钟前
傻瓜完成签到 ,获得积分10
2分钟前
哈哈完成签到 ,获得积分10
3分钟前
sissiarno完成签到,获得积分0
3分钟前
淡淡菠萝完成签到 ,获得积分10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
科研通AI5应助嘟嘟哒采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
白天亮完成签到,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
小朱马完成签到,获得积分10
5分钟前
5分钟前
小朱马发布了新的文献求助10
5分钟前
万能图书馆应助cc采纳,获得10
5分钟前
arniu2008完成签到,获得积分10
5分钟前
6分钟前
cc发布了新的文献求助10
6分钟前
火星上惜天完成签到 ,获得积分10
6分钟前
帅气的安柏完成签到,获得积分10
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
观众完成签到,获得积分10
7分钟前
yu完成签到 ,获得积分10
7分钟前
Ava应助lx采纳,获得10
8分钟前
浮游应助科研通管家采纳,获得10
9分钟前
思源应助科研通管家采纳,获得10
9分钟前
Cumin完成签到 ,获得积分10
9分钟前
豆丁小猫完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255132
求助须知:如何正确求助?哪些是违规求助? 4417795
关于积分的说明 13751714
捐赠科研通 4290711
什么是DOI,文献DOI怎么找? 2354326
邀请新用户注册赠送积分活动 1350941
关于科研通互助平台的介绍 1311305