Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network

计算机科学 代表(政治) 人工智能 特征(语言学) 过程(计算) 药物发现 卷积神经网络 机器学习 药物靶点 人工神经网络 深度学习 随机游动 生物信息学 生物 数学 操作系统 统计 哲学 药理学 法学 政治 语言学 政治学
作者
Xiaoqiang Xu,Ping Xuan,Tiangang Zhang,Bingxu Chen,Nan Sheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 2294-2304 被引量:3
标识
DOI:10.1109/tcbb.2021.3066813
摘要

Computational strategies for identifying new drug-target interactions (DTIs) can guide the process of drug discovery, reduce the cost and time of drug development, and thus promote drug development. Most recently proposed methods predict DTIs via integration of heterogeneous data related to drugs and proteins. However, previous methods have failed to deeply integrate these heterogeneous data and learn deep feature representations of multiple original similarities and interactions related to drugs and proteins. We therefore constructed a heterogeneous network by integrating a variety of connection relationships about drugs and proteins, including drugs, proteins, and drug side effects, as well as their similarities, interactions, and associations. A DTI prediction method based on random walk and convolutional neural network was proposed and referred to as DTIPred. DTIPred not only takes advantage of various original features related to drugs and proteins, but also integrates the topological information of heterogeneous networks. The prediction model is composed of two sides and learns the deep feature representation of a drug-protein pair. On the left side, random walk with restart is applied to learn the topological vectors of drug and protein nodes. The topological representation is further learned by the constructed deep learning frame based on convolutional neural network. The right side of the model focuses on integrating multiple original similarities and interactions of drugs and proteins to learn the original representation of the drug-protein pair. The results of cross-validation experiments demonstrate that DTIPred achieves better prediction performance than several state-of-the-art methods. During the validation process, DTIPred can retrieve more actual drug-protein interactions within the top part of the predicted results, which may be more helpful to biologists. In addition, case studies on five drugs further demonstrate the ability of DTIPred to discover potential drug-protein interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无痕完成签到,获得积分10
刚刚
SciGPT应助gengqiao采纳,获得10
1秒前
KK发布了新的文献求助10
1秒前
欣慰的沁发布了新的文献求助10
1秒前
2秒前
迢迢万里发布了新的文献求助10
2秒前
POKKKK完成签到,获得积分10
2秒前
2秒前
lalaland完成签到,获得积分10
3秒前
牧长一完成签到 ,获得积分0
3秒前
4秒前
4秒前
5秒前
无奈傲菡发布了新的文献求助100
5秒前
领导范儿应助DAISY采纳,获得10
6秒前
6秒前
Double.发布了新的文献求助10
6秒前
亦汐完成签到 ,获得积分10
6秒前
大胆夏云发布了新的文献求助30
7秒前
7秒前
李健应助MrCat采纳,获得10
7秒前
hhhhhhh完成签到,获得积分10
8秒前
学子发布了新的文献求助10
8秒前
小奶球完成签到,获得积分20
8秒前
8秒前
9秒前
cc4ever完成签到,获得积分10
9秒前
9秒前
冷夏发布了新的文献求助10
10秒前
10秒前
小西贝完成签到,获得积分10
10秒前
10秒前
10秒前
Ava应助sun采纳,获得10
10秒前
小小菜刀发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
gengqiao发布了新的文献求助10
13秒前
mrc完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919