Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network

计算机科学 代表(政治) 人工智能 特征(语言学) 过程(计算) 药物发现 卷积神经网络 机器学习 药物靶点 人工神经网络 深度学习 随机游动 生物信息学 生物 数学 操作系统 统计 哲学 药理学 法学 政治 语言学 政治学
作者
Xiaoqiang Xu,Ping Xuan,Tiangang Zhang,Bingxu Chen,Nan Sheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 2294-2304 被引量:3
标识
DOI:10.1109/tcbb.2021.3066813
摘要

Computational strategies for identifying new drug–target interactions (DTIs) can guide the process of drug discovery, reduce the cost and time of drug development, and thus promote drug development. Most recently proposed methods predict DTIs via integration of heterogeneous data related to drugs and proteins. However, previous methods have failed to deeply integrate these heterogeneous data and learn deep feature representations of multiple original similarities and interactions related to drugs and proteins. We therefore constructed a heterogeneous network by integrating a variety of connection relationships about drugs and proteins, including drugs, proteins, and drug side effects, as well as their similarities, interactions, and associations. A DTI prediction method based on random walk and convolutional neural network was proposed and referred to as DTIPred. DTIPred not only takes advantage of various original features related to drugs and proteins, but also integrates the topological information of heterogeneous networks. The prediction model is composed of two sides and learns the deep feature representation of a drug–protein pair. On the left side, random walk with restart is applied to learn the topological vectors of drug and protein nodes. The topological representation is further learned by the constructed deep learning frame based on convolutional neural network. The right side of the model focuses on integrating multiple original similarities and interactions of drugs and proteins to learn the original representation of the drug–protein pair. The results of cross-validation experiments demonstrate that DTIPred achieves better prediction performance than several state-of-the-art methods. During the validation process, DTIPred can retrieve more actual drug–protein interactions within the top part of the predicted results, which may be more helpful to biologists. In addition, case studies on five drugs further demonstrate the ability of DTIPred to discover potential drug–protein interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun_lin完成签到 ,获得积分10
1秒前
Orange应助刻苦的晓槐采纳,获得30
1秒前
无心的秋珊完成签到 ,获得积分10
2秒前
知己发布了新的文献求助20
3秒前
酷炫的紫寒完成签到,获得积分10
3秒前
隐形曼青应助lpw采纳,获得10
3秒前
4秒前
车 干完成签到 ,获得积分10
4秒前
丢丢银发布了新的文献求助20
4秒前
luanzhaohui发布了新的文献求助30
4秒前
火火完成签到,获得积分10
7秒前
7秒前
冷艳冷安完成签到,获得积分10
7秒前
Sencetich发布了新的文献求助10
9秒前
Salt发布了新的文献求助10
9秒前
11秒前
丢丢银完成签到,获得积分10
12秒前
13秒前
13秒前
陈文娟发布了新的文献求助10
13秒前
oh应助北风采纳,获得10
13秒前
15秒前
思源应助哈哈哈采纳,获得10
15秒前
田様应助冷艳冷安采纳,获得10
16秒前
小猪佩奇发布了新的文献求助10
16秒前
Miracle完成签到,获得积分10
17秒前
zhizhi发布了新的文献求助10
17秒前
18秒前
19秒前
PL发布了新的文献求助10
20秒前
20秒前
20秒前
zhh发布了新的文献求助10
21秒前
22秒前
22秒前
没有银完成签到,获得积分10
22秒前
jrzsy发布了新的文献求助10
23秒前
科研通AI2S应助陈文娟采纳,获得30
23秒前
Liufgui应助欣喜的以丹采纳,获得20
24秒前
丙烯酸树脂完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061