Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network

计算机科学 代表(政治) 人工智能 特征(语言学) 过程(计算) 药物发现 卷积神经网络 机器学习 药物靶点 人工神经网络 深度学习 随机游动 生物信息学 生物 数学 操作系统 统计 哲学 药理学 法学 政治 语言学 政治学
作者
Xiaoqiang Xu,Ping Xuan,Tiangang Zhang,Bingxu Chen,Nan Sheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 2294-2304 被引量:4
标识
DOI:10.1109/tcbb.2021.3066813
摘要

Computational strategies for identifying new drug–target interactions (DTIs) can guide the process of drug discovery, reduce the cost and time of drug development, and thus promote drug development. Most recently proposed methods predict DTIs via integration of heterogeneous data related to drugs and proteins. However, previous methods have failed to deeply integrate these heterogeneous data and learn deep feature representations of multiple original similarities and interactions related to drugs and proteins. We therefore constructed a heterogeneous network by integrating a variety of connection relationships about drugs and proteins, including drugs, proteins, and drug side effects, as well as their similarities, interactions, and associations. A DTI prediction method based on random walk and convolutional neural network was proposed and referred to as DTIPred. DTIPred not only takes advantage of various original features related to drugs and proteins, but also integrates the topological information of heterogeneous networks. The prediction model is composed of two sides and learns the deep feature representation of a drug–protein pair. On the left side, random walk with restart is applied to learn the topological vectors of drug and protein nodes. The topological representation is further learned by the constructed deep learning frame based on convolutional neural network. The right side of the model focuses on integrating multiple original similarities and interactions of drugs and proteins to learn the original representation of the drug–protein pair. The results of cross-validation experiments demonstrate that DTIPred achieves better prediction performance than several state-of-the-art methods. During the validation process, DTIPred can retrieve more actual drug–protein interactions within the top part of the predicted results, which may be more helpful to biologists. In addition, case studies on five drugs further demonstrate the ability of DTIPred to discover potential drug–protein interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
能干冰露发布了新的文献求助10
1秒前
蜜桃奇迹发布了新的文献求助10
1秒前
Danboard完成签到,获得积分10
1秒前
NexusExplorer应助典雅的依秋采纳,获得10
2秒前
直率马里奥完成签到,获得积分10
3秒前
3秒前
3秒前
科研通AI6应助antarctica采纳,获得10
4秒前
4秒前
小丸子完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Ma完成签到,获得积分10
4秒前
项歌完成签到 ,获得积分10
4秒前
6秒前
kendrick677发布了新的文献求助10
6秒前
7秒前
7秒前
Passer完成签到,获得积分10
8秒前
8秒前
9秒前
蜜桃奇迹完成签到,获得积分10
9秒前
可爱芯完成签到,获得积分10
10秒前
星辰大海应助林夏采纳,获得10
10秒前
酷波er应助晗宝儿采纳,获得10
10秒前
12秒前
12秒前
xiaoyu完成签到,获得积分10
12秒前
13秒前
13秒前
taochuan发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
科研通AI6应助无限的面包采纳,获得10
14秒前
14秒前
14秒前
月子淇完成签到 ,获得积分10
14秒前
14秒前
bjbmtxy应助TLB采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531567
求助须知:如何正确求助?哪些是违规求助? 4620363
关于积分的说明 14572950
捐赠科研通 4560019
什么是DOI,文献DOI怎么找? 2498695
邀请新用户注册赠送积分活动 1478617
关于科研通互助平台的介绍 1449993