亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network

计算机科学 代表(政治) 人工智能 特征(语言学) 过程(计算) 药物发现 卷积神经网络 机器学习 药物靶点 人工神经网络 深度学习 随机游动 生物信息学 生物 数学 操作系统 统计 哲学 药理学 法学 政治 语言学 政治学
作者
Xiaoqiang Xu,Ping Xuan,Tiangang Zhang,Bingxu Chen,Nan Sheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 2294-2304 被引量:4
标识
DOI:10.1109/tcbb.2021.3066813
摘要

Computational strategies for identifying new drug–target interactions (DTIs) can guide the process of drug discovery, reduce the cost and time of drug development, and thus promote drug development. Most recently proposed methods predict DTIs via integration of heterogeneous data related to drugs and proteins. However, previous methods have failed to deeply integrate these heterogeneous data and learn deep feature representations of multiple original similarities and interactions related to drugs and proteins. We therefore constructed a heterogeneous network by integrating a variety of connection relationships about drugs and proteins, including drugs, proteins, and drug side effects, as well as their similarities, interactions, and associations. A DTI prediction method based on random walk and convolutional neural network was proposed and referred to as DTIPred. DTIPred not only takes advantage of various original features related to drugs and proteins, but also integrates the topological information of heterogeneous networks. The prediction model is composed of two sides and learns the deep feature representation of a drug–protein pair. On the left side, random walk with restart is applied to learn the topological vectors of drug and protein nodes. The topological representation is further learned by the constructed deep learning frame based on convolutional neural network. The right side of the model focuses on integrating multiple original similarities and interactions of drugs and proteins to learn the original representation of the drug–protein pair. The results of cross-validation experiments demonstrate that DTIPred achieves better prediction performance than several state-of-the-art methods. During the validation process, DTIPred can retrieve more actual drug–protein interactions within the top part of the predicted results, which may be more helpful to biologists. In addition, case studies on five drugs further demonstrate the ability of DTIPred to discover potential drug–protein interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助DanYang采纳,获得20
1秒前
昆工完成签到 ,获得积分10
1秒前
Xiaoqi完成签到 ,获得积分10
2秒前
冰红茶完成签到 ,获得积分10
3秒前
3秒前
dowe_0214发布了新的文献求助10
4秒前
7秒前
wen完成签到,获得积分20
8秒前
andrele发布了新的文献求助10
10秒前
如意元霜完成签到 ,获得积分10
10秒前
天天天晴完成签到 ,获得积分10
11秒前
11秒前
SJJ应助dowe_0214采纳,获得10
12秒前
wangxw完成签到,获得积分10
13秒前
13秒前
15秒前
zmm完成签到,获得积分20
18秒前
HOPKINSON完成签到,获得积分10
18秒前
18秒前
VX发布了新的文献求助10
24秒前
24秒前
25秒前
29秒前
zmm发布了新的文献求助30
30秒前
36秒前
小白菜完成签到,获得积分20
43秒前
45秒前
执着艳完成签到 ,获得积分10
45秒前
Leofar完成签到 ,获得积分10
46秒前
51秒前
51秒前
风趣的小夏完成签到 ,获得积分10
52秒前
kk发布了新的文献求助10
55秒前
55秒前
histamin完成签到,获得积分10
56秒前
czyzyzy完成签到,获得积分10
56秒前
小白菜发布了新的文献求助10
57秒前
58秒前
白潇潇完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731585
求助须知:如何正确求助?哪些是违规求助? 5331174
关于积分的说明 15321204
捐赠科研通 4877543
什么是DOI,文献DOI怎么找? 2620392
邀请新用户注册赠送积分活动 1569649
关于科研通互助平台的介绍 1526191