Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

变压器 计算机科学 编码器 依赖关系(UML) 序列(生物学) 算法 人工智能 工程类 电压 遗传学 生物 操作系统 电气工程
作者
Haoyi Zhou,Shanghang Zhang,Jieqi Peng,Shuai Zhang,Jianxin Li,Hui Xiong,Wancai Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (12): 11106-11115 被引量:3001
标识
DOI:10.1609/aaai.v35i12.17325
摘要

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖醋排骨发布了新的文献求助10
刚刚
1秒前
2秒前
天冷了hhhdh完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
健壮的以莲应助美亲采纳,获得10
6秒前
Lucas应助香风智乃采纳,获得10
7秒前
研友_LOoz0L发布了新的文献求助10
7秒前
清_完成签到,获得积分10
7秒前
称心冬云发布了新的文献求助10
7秒前
哼哼唧唧发布了新的文献求助10
8秒前
彭于晏应助樱桃小王子采纳,获得10
8秒前
wangdaxue发布了新的文献求助10
9秒前
9秒前
慕青应助彭a采纳,获得10
10秒前
10秒前
11秒前
YT完成签到,获得积分20
11秒前
13秒前
honey发布了新的文献求助30
14秒前
duanr完成签到,获得积分10
14秒前
16秒前
风中道罡发布了新的文献求助10
16秒前
利好完成签到 ,获得积分10
17秒前
simon发布了新的文献求助10
18秒前
风中的静珊完成签到,获得积分10
19秒前
研友_VZG7GZ应助称心冬云采纳,获得10
20秒前
李健应助偷乐采纳,获得10
20秒前
斯文败类应助111采纳,获得10
20秒前
Manta发布了新的文献求助10
21秒前
夏日香气发布了新的文献求助10
21秒前
现代的汉堡完成签到,获得积分10
22秒前
simon完成签到,获得积分10
22秒前
我是老大应助张文懿采纳,获得10
23秒前
23秒前
岩墩墩发布了新的文献求助10
24秒前
独狼完成签到 ,获得积分10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014