Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

变压器 计算机科学 编码器 依赖关系(UML) 序列(生物学) 算法 人工智能 工程类 电压 遗传学 生物 操作系统 电气工程
作者
Haoyi Zhou,Shanghang Zhang,Jieqi Peng,Shuai Zhang,Jianxin Li,Hui Xiong,Wancai Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (12): 11106-11115 被引量:2607
标识
DOI:10.1609/aaai.v35i12.17325
摘要

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Abao采纳,获得10
刚刚
sfw驳回了苏照杭应助
1秒前
dingdong发布了新的文献求助10
1秒前
别拖延了要毕业啊完成签到,获得积分10
2秒前
2秒前
2秒前
Rrr发布了新的文献求助10
2秒前
dingdong发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
yuan发布了新的文献求助10
5秒前
6秒前
cc完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
一一发布了新的文献求助10
7秒前
领导范儿应助Chridy采纳,获得10
7秒前
8秒前
凤凰山发布了新的文献求助10
8秒前
8秒前
孔雨珍发布了新的文献求助10
8秒前
淡定的思松应助通~采纳,获得10
9秒前
9秒前
明亮的八宝粥完成签到,获得积分10
9秒前
mayungui发布了新的文献求助10
9秒前
大型海狮完成签到,获得积分10
9秒前
搜集达人应助科研菜鸟采纳,获得10
10秒前
雨天有伞完成签到,获得积分10
10秒前
蕾子发布了新的文献求助10
10秒前
10秒前
zhui发布了新的文献求助10
10秒前
wanci应助jxcandice采纳,获得10
10秒前
factor发布了新的文献求助10
10秒前
11秒前
泊声发布了新的文献求助20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794