Robust Task Scheduling for Heterogeneous Robot Teams Under Capability Uncertainty

计算机科学 分布式计算 多智能体系统 稳健性(进化) 可扩展性 调度(生产过程) 机器人 人工智能 数学优化 数学 生物化学 数据库 基因 化学
作者
Bo Fu,William Smith,Denise Rizzo,Matthew P. Castanier,Maani Ghaffari,Kira Barton
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1087-1105 被引量:14
标识
DOI:10.1109/tro.2022.3216068
摘要

This article develops a stochastic programming framework for multiagent systems, where task decomposition, assignment, and scheduling problems are simultaneously optimized. The framework can be applied to heterogeneous mobile robot teams with distributed subtasks. Examples include pandemic robotic service coordination, explore and rescue, and delivery systems with heterogeneous vehicles. Owing to their inherent flexibility and robustness, multiagent systems are applied in a growing range of real-world problems that involve heterogeneous tasks and uncertain information. Most previous works assume one fixed way to decompose a task into roles that can later be assigned to the agents. This assumption is not valid for a complex task where the roles can vary and multiple decomposition structures exist. Meanwhile, it is unclear how uncertainties in task requirements and agent capabilities can be systematically quantified and optimized under a multiagent system setting. A representation for complex tasks is proposed: agent capabilities are represented as a vector of random distributions, and task requirements are verified by a generalizable binary function. The conditional value at risk is chosen as a metric in the objective function to generate robust plans. An efficient algorithm is described to solve the model, and the whole framework is evaluated in two different practical test cases: capture-the-flag and robotic service coordination during a pandemic (e.g., COVID-19). Results demonstrate that the framework is generalizable, is scalable up to 140 agents and 40 tasks for the example test cases, and provides low-cost plans that ensure a high probability of success.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小白完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
2秒前
Cc完成签到 ,获得积分10
2秒前
彩色冥幽完成签到,获得积分10
2秒前
2秒前
Eric发布了新的文献求助10
3秒前
3秒前
skbkbe发布了新的文献求助10
4秒前
Pluto完成签到,获得积分10
4秒前
cx发布了新的文献求助10
4秒前
香蕉觅云应助gayfall采纳,获得10
4秒前
jsy发布了新的文献求助10
6秒前
6秒前
wyl发布了新的文献求助10
6秒前
Lilac发布了新的文献求助10
7秒前
7秒前
jing111发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI2S应助leyellows采纳,获得10
8秒前
22完成签到,获得积分10
9秒前
9秒前
Monday完成签到,获得积分10
9秒前
10秒前
breaking完成签到,获得积分10
10秒前
694255360完成签到,获得积分10
10秒前
dxwy应助神奇的光子采纳,获得10
10秒前
11秒前
科研通AI2S应助刘滨豪采纳,获得10
12秒前
大模型应助许许采纳,获得10
13秒前
13秒前
14秒前
skbkbe完成签到,获得积分10
14秒前
zhangsir发布了新的文献求助20
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144560
求助须知:如何正确求助?哪些是违规求助? 2796059
关于积分的说明 7817719
捐赠科研通 2452134
什么是DOI,文献DOI怎么找? 1304892
科研通“疑难数据库(出版商)”最低求助积分说明 627331
版权声明 601432