Robust Task Scheduling for Heterogeneous Robot Teams Under Capability Uncertainty

计算机科学 分布式计算 多智能体系统 稳健性(进化) 可扩展性 调度(生产过程) 机器人 人工智能 数学优化 数学 生物化学 数据库 基因 化学
作者
Bo Fu,William Smith,Denise Rizzo,Matthew P. Castanier,Maani Ghaffari,Kira Barton
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1087-1105 被引量:14
标识
DOI:10.1109/tro.2022.3216068
摘要

This article develops a stochastic programming framework for multiagent systems, where task decomposition, assignment, and scheduling problems are simultaneously optimized. The framework can be applied to heterogeneous mobile robot teams with distributed subtasks. Examples include pandemic robotic service coordination, explore and rescue, and delivery systems with heterogeneous vehicles. Owing to their inherent flexibility and robustness, multiagent systems are applied in a growing range of real-world problems that involve heterogeneous tasks and uncertain information. Most previous works assume one fixed way to decompose a task into roles that can later be assigned to the agents. This assumption is not valid for a complex task where the roles can vary and multiple decomposition structures exist. Meanwhile, it is unclear how uncertainties in task requirements and agent capabilities can be systematically quantified and optimized under a multiagent system setting. A representation for complex tasks is proposed: agent capabilities are represented as a vector of random distributions, and task requirements are verified by a generalizable binary function. The conditional value at risk is chosen as a metric in the objective function to generate robust plans. An efficient algorithm is described to solve the model, and the whole framework is evaluated in two different practical test cases: capture-the-flag and robotic service coordination during a pandemic (e.g., COVID-19). Results demonstrate that the framework is generalizable, is scalable up to 140 agents and 40 tasks for the example test cases, and provides low-cost plans that ensure a high probability of success.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
JamesPei应助迅速如柏采纳,获得10
5秒前
5秒前
伊叶之丘完成签到 ,获得积分10
6秒前
小鱼儿发布了新的文献求助10
6秒前
PG完成签到,获得积分20
7秒前
7秒前
科研笑川发布了新的文献求助10
7秒前
seun完成签到,获得积分10
8秒前
8秒前
健壮不斜完成签到 ,获得积分10
8秒前
aa完成签到,获得积分10
10秒前
华仔应助zhu采纳,获得30
10秒前
zhuang完成签到,获得积分10
10秒前
11秒前
小马甲应助科研笑川采纳,获得10
13秒前
吕佳蔚发布了新的文献求助30
13秒前
ahua完成签到 ,获得积分10
14秒前
roselau完成签到,获得积分10
14秒前
张淼完成签到,获得积分10
15秒前
15秒前
标致的问晴完成签到,获得积分10
17秒前
19秒前
内向的羊青关注了科研通微信公众号
21秒前
MX完成签到 ,获得积分10
22秒前
迅速如柏发布了新的文献求助10
22秒前
慕无忌发布了新的文献求助10
23秒前
搞怪从波完成签到 ,获得积分10
30秒前
32秒前
慕无忌完成签到,获得积分10
32秒前
浮游应助xiaobai123456采纳,获得10
33秒前
Lucas应助LZT采纳,获得10
33秒前
深情安青应助wxf采纳,获得10
34秒前
34秒前
小闵完成签到,获得积分10
36秒前
42秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866