Robust Task Scheduling for Heterogeneous Robot Teams Under Capability Uncertainty

计算机科学 分布式计算 多智能体系统 稳健性(进化) 可扩展性 调度(生产过程) 机器人 人工智能 数学优化 数学 生物化学 数据库 基因 化学
作者
Bo Fu,William Smith,Denise Rizzo,Matthew P. Castanier,Maani Ghaffari,Kira Barton
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1087-1105 被引量:14
标识
DOI:10.1109/tro.2022.3216068
摘要

This article develops a stochastic programming framework for multiagent systems, where task decomposition, assignment, and scheduling problems are simultaneously optimized. The framework can be applied to heterogeneous mobile robot teams with distributed subtasks. Examples include pandemic robotic service coordination, explore and rescue, and delivery systems with heterogeneous vehicles. Owing to their inherent flexibility and robustness, multiagent systems are applied in a growing range of real-world problems that involve heterogeneous tasks and uncertain information. Most previous works assume one fixed way to decompose a task into roles that can later be assigned to the agents. This assumption is not valid for a complex task where the roles can vary and multiple decomposition structures exist. Meanwhile, it is unclear how uncertainties in task requirements and agent capabilities can be systematically quantified and optimized under a multiagent system setting. A representation for complex tasks is proposed: agent capabilities are represented as a vector of random distributions, and task requirements are verified by a generalizable binary function. The conditional value at risk is chosen as a metric in the objective function to generate robust plans. An efficient algorithm is described to solve the model, and the whole framework is evaluated in two different practical test cases: capture-the-flag and robotic service coordination during a pandemic (e.g., COVID-19). Results demonstrate that the framework is generalizable, is scalable up to 140 agents and 40 tasks for the example test cases, and provides low-cost plans that ensure a high probability of success.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaowen完成签到,获得积分10
刚刚
小猴不爱吃水果完成签到,获得积分20
2秒前
2秒前
熊熊发布了新的文献求助10
3秒前
3秒前
Lekai完成签到,获得积分10
4秒前
6秒前
冰留完成签到 ,获得积分10
6秒前
leoelizabeth完成签到 ,获得积分10
8秒前
听听发布了新的文献求助10
8秒前
lightman完成签到,获得积分10
9秒前
9秒前
传奇3应助林瓜瓜采纳,获得10
10秒前
那一年盛夏完成签到,获得积分10
11秒前
11秒前
13秒前
Macgonal完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
yydragen应助阿桂采纳,获得50
15秒前
MZ发布了新的文献求助10
15秒前
NexusExplorer应助听听采纳,获得10
16秒前
17秒前
WXX发布了新的文献求助10
17秒前
西瓜发布了新的文献求助10
18秒前
Lucas应助Libra采纳,获得30
21秒前
元锦程完成签到,获得积分10
21秒前
fenghuo发布了新的文献求助10
22秒前
24秒前
诸茹嫣完成签到 ,获得积分10
24秒前
27秒前
SteveRogers发布了新的文献求助10
28秒前
完美世界应助程风破浪采纳,获得10
28秒前
田様应助zhuflyfly304采纳,获得10
29秒前
华生完成签到,获得积分10
29秒前
byX完成签到,获得积分10
30秒前
成就的井完成签到 ,获得积分20
30秒前
31秒前
华生发布了新的文献求助10
31秒前
ccc完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019