Robust Task Scheduling for Heterogeneous Robot Teams Under Capability Uncertainty

计算机科学 分布式计算 多智能体系统 稳健性(进化) 可扩展性 调度(生产过程) 机器人 人工智能 数学优化 数学 生物化学 数据库 基因 化学
作者
Bo Fu,William Smith,Denise Rizzo,Matthew P. Castanier,Maani Ghaffari,Kira Barton
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1087-1105 被引量:14
标识
DOI:10.1109/tro.2022.3216068
摘要

This article develops a stochastic programming framework for multiagent systems, where task decomposition, assignment, and scheduling problems are simultaneously optimized. The framework can be applied to heterogeneous mobile robot teams with distributed subtasks. Examples include pandemic robotic service coordination, explore and rescue, and delivery systems with heterogeneous vehicles. Owing to their inherent flexibility and robustness, multiagent systems are applied in a growing range of real-world problems that involve heterogeneous tasks and uncertain information. Most previous works assume one fixed way to decompose a task into roles that can later be assigned to the agents. This assumption is not valid for a complex task where the roles can vary and multiple decomposition structures exist. Meanwhile, it is unclear how uncertainties in task requirements and agent capabilities can be systematically quantified and optimized under a multiagent system setting. A representation for complex tasks is proposed: agent capabilities are represented as a vector of random distributions, and task requirements are verified by a generalizable binary function. The conditional value at risk is chosen as a metric in the objective function to generate robust plans. An efficient algorithm is described to solve the model, and the whole framework is evaluated in two different practical test cases: capture-the-flag and robotic service coordination during a pandemic (e.g., COVID-19). Results demonstrate that the framework is generalizable, is scalable up to 140 agents and 40 tasks for the example test cases, and provides low-cost plans that ensure a high probability of success.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shiyin发布了新的文献求助10
刚刚
刚刚
桐桐应助mark采纳,获得10
1秒前
李健的小迷弟应助mmol采纳,获得10
1秒前
1秒前
思源应助林新宇采纳,获得10
2秒前
风起人散发布了新的文献求助10
2秒前
he完成签到,获得积分10
3秒前
木木完成签到,获得积分10
3秒前
3秒前
hs完成签到,获得积分10
3秒前
Yy完成签到,获得积分10
4秒前
4秒前
4秒前
Ava应助ZDM6094采纳,获得10
5秒前
5秒前
5秒前
angel完成签到,获得积分10
5秒前
crispy发布了新的文献求助10
5秒前
假不贾发布了新的文献求助10
6秒前
feiyang发布了新的文献求助10
6秒前
wzyyyyue发布了新的文献求助30
6秒前
玉耀发布了新的文献求助20
6秒前
GHJK发布了新的文献求助10
7秒前
隐形曼青应助Gloven采纳,获得10
7秒前
miaomiao完成签到,获得积分10
7秒前
才下眉头完成签到,获得积分10
8秒前
英吉利25发布了新的文献求助10
9秒前
科研通AI6应助chenyufeng采纳,获得10
9秒前
qwert完成签到,获得积分10
9秒前
9秒前
小蘑菇应助迷路从波采纳,获得10
10秒前
u2u2完成签到,获得积分10
10秒前
林新宇发布了新的文献求助10
10秒前
一玥完成签到,获得积分10
10秒前
CNY完成签到 ,获得积分10
11秒前
xiaohan完成签到 ,获得积分20
11秒前
11秒前
tianzml0应助昵称未命名采纳,获得60
11秒前
QING完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525447
求助须知:如何正确求助?哪些是违规求助? 4615623
关于积分的说明 14549371
捐赠科研通 4553692
什么是DOI,文献DOI怎么找? 2495468
邀请新用户注册赠送积分活动 1475991
关于科研通互助平台的介绍 1447742