Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals

自编码 模式识别(心理学) 脑电图 人工智能 计算机科学 卷积神经网络 癫痫发作 深度学习 支持向量机 核(代数) 特征提取 语音识别 数学 心理学 组合数学 精神科
作者
Mrutyunjaya Sahani,Susanta Kumar Rout,P.K. Dash
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 595-605 被引量:19
标识
DOI:10.1109/tbcas.2021.3090995
摘要

In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN) are combined to recognize the epileptic seizure using both the multichannel scalp and single-channel electroencephalogram (EEG) signals. The novel RDCSAE structure is designed to extract the most discriminative unsupervised features from EEG signals and fed into the proposed supervised IKRVFLN classifier to train efficiently by reducing the mean-square error cost function for recognizing the epileptic seizure activity with promising accuracy. The proposed RDCSAE-IKRVFLN algorithm is tested over the benchmark Boston Children's Hospital multichannel scalp EEG (sEEG) and Boon University, Germany single-channel EEG databases. The less computational complexity, higher learning speed, better model generalization, accurate epileptic seizure recognition, remarkable classification accuracy, negligible false positive rate per hour (FPR/h) and short event recognition time are the main advantages of the proposed RDCSAE-IKRVFLN method over reduced deep convolutional neural network (RDCNN), RDCSAE and RDCSAE-KRVFLN methods. The proposed RDCSAE-IKRVFLN method is implemented in a high-speed reconfigurable field-programmable gate array (FPGA) hardware environment to design a computer-aided-diagnosis (CAD) system for automatic epileptic seizure diagnosis. The simplicity, feasibility, and practicability of the proposed method validate the stable and reliable performances of epilepsy detection and recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linda完成签到,获得积分10
刚刚
2秒前
慕青应助69岁扶墙对抗采纳,获得10
2秒前
4秒前
Lucas应助111采纳,获得10
6秒前
weisuonan101完成签到,获得积分10
6秒前
wen应助Kiki采纳,获得10
8秒前
在水一方应助粗暴的世倌采纳,获得10
9秒前
9秒前
wthsgddj发布了新的文献求助10
9秒前
10秒前
12秒前
lan完成签到,获得积分10
14秒前
123发布了新的文献求助10
14秒前
15秒前
果果发布了新的文献求助10
15秒前
脑洞疼应助缥缈的龙猫采纳,获得10
17秒前
19秒前
祁瓀完成签到 ,获得积分10
21秒前
Yancent应助开朗台灯采纳,获得10
23秒前
25秒前
深情安青应助复杂惜萱采纳,获得10
26秒前
果果完成签到,获得积分10
27秒前
30秒前
35秒前
38秒前
38秒前
水心完成签到,获得积分10
41秒前
彩虹马发布了新的文献求助10
42秒前
英俊的铭应助龙猪采纳,获得10
42秒前
缥缈的龙猫完成签到,获得积分10
43秒前
学不完了发布了新的文献求助10
44秒前
iVANPENNY应助kalah采纳,获得10
44秒前
rosalieshi应助欣欣然采纳,获得30
44秒前
45秒前
CC完成签到,获得积分10
49秒前
复杂惜萱发布了新的文献求助10
49秒前
50秒前
50秒前
彩虹马完成签到,获得积分10
52秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313702
求助须知:如何正确求助?哪些是违规求助? 2945997
关于积分的说明 8527826
捐赠科研通 2621588
什么是DOI,文献DOI怎么找? 1433925
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650648