亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Method for Rapid Self-Calibration of Wearable Soft Strain Sensors

校准 可穿戴计算机 软传感器 计算机科学 运动捕捉 声学 计算机视觉 人工智能 运动(物理) 过程(计算) 嵌入式系统 数学 物理 统计 操作系统
作者
Yaqing Feng,Xiangyu Chen,Qingxun Wu,Guofeng Cao,David McCoul,Bo Huang,Jianwen Zhao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (18): 20943-20950 被引量:10
标识
DOI:10.1109/jsen.2021.3095875
摘要

Compared to rigid sensors, soft stain sensors are more suitable for measuring human joint motion because soft sensors are more comfortable to wear. In order to perform more precise measurements, the soft stain sensor should be re-calibrated before performing each measurement in order to eliminate error from donning and doffing. Current calibration methods are often performed by optical motion capture systems (OMCSs). However OMCSs are large and cumbersome, and there is no directly applicable calibration method for soft stain sensors in the measurement of human joint motion. Calibration should be able to be performed quickly and without the need of large equipment such as OMCSs. This paper proposes a calibration method for wearable soft strain sensors that can be done quickly and automatically. The soft sensor structure for self-calibration is parallel and partitioned, and there are integrated primary and redundant sensors. The basic idea of this method is to use redundant sensors to re-calibrate the primary sensor, and only a simple calibration action is required for the self-calibration. After self-calibration, the average errors of measurement were all less than 5 degrees, and the relative errors were all less than 4% for sensor and clothing donned and doffed and long-term sensor migration while wearing. Self-calibration can be performed in only 10 seconds. The results presented that the proposed calibration method is feasible for engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
笑点低的哈密瓜完成签到,获得积分10
13秒前
35秒前
Suraim完成签到,获得积分10
44秒前
54秒前
1分钟前
willlee发布了新的文献求助20
1分钟前
Santiago完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
江洋大盗完成签到,获得积分10
2分钟前
温wen完成签到,获得积分10
2分钟前
Echopotter发布了新的文献求助10
2分钟前
2分钟前
方勇飞发布了新的文献求助10
2分钟前
Echopotter完成签到,获得积分10
2分钟前
科研通AI6应助七七七七七采纳,获得10
3分钟前
范ER完成签到 ,获得积分10
3分钟前
夜幽昙完成签到,获得积分10
3分钟前
3分钟前
3分钟前
apckkk完成签到 ,获得积分10
3分钟前
3分钟前
CipherSage应助willlee采纳,获得10
4分钟前
4分钟前
wyz完成签到 ,获得积分10
4分钟前
Donnie333完成签到,获得积分10
4分钟前
4分钟前
willlee发布了新的文献求助10
4分钟前
开朗的钻石完成签到,获得积分10
4分钟前
willlee发布了新的文献求助10
5分钟前
阿俊完成签到 ,获得积分10
5分钟前
5分钟前
Lily发布了新的文献求助10
6分钟前
在水一方应助willlee采纳,获得10
6分钟前
香蕉觅云应助Lily采纳,获得10
6分钟前
6分钟前
willlee发布了新的文献求助10
6分钟前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5386382
求助须知:如何正确求助?哪些是违规求助? 4508734
关于积分的说明 14030321
捐赠科研通 4419114
什么是DOI,文献DOI怎么找? 2427413
邀请新用户注册赠送积分活动 1420108
关于科研通互助平台的介绍 1399012