Soil Aggregate Stability Mapping Using Remote Sensing and GIS-Based Machine Learning Technique

归一化差异植被指数 范畴变量 地形湿度指数 环境科学 遥感 土壤科学 骨料(复合) 仰角(弹道) 理论(学习稳定性) 植被(病理学) 均方误差 水文学(农业) 数字高程模型 地质学 数学 统计 计算机科学 岩土工程 材料科学 机器学习 海洋学 气候变化 病理 复合材料 医学 几何学
作者
Yassine Bouslıhım,Aicha Rochdi,Rachid Aboutayeb,Namira El Amrani-Paaza,Abdelhalim Miftah,Lahcen Hssaini
出处
期刊:Frontiers in Earth Science [Frontiers Media SA]
卷期号:9 被引量:25
标识
DOI:10.3389/feart.2021.748859
摘要

Soil aggregate stability (SAS) is a critical parameter of soil quality and its mapping can help determine erosion hotspots. Despite this importance, SAS is less documented in available literature due to limited number of analyzes besides being a time consuming. For this reason, many researchers have turned to alternative methods that often use readily available variables such as soil parameters or remote sensing indices to estimate this variable. In that framework, the aim of the present study focused on the investigation of the feasibile use of adapted Leo Breiman’s random forest algorithm (RF) to mapping different mean weight diameter (MWD) tests as an index of SAS (mechanical breakdown (MWDmb), slow wetting (MWDsw), fast wetting (MWDfw) and the mean of the three tests (MWDmean)). The model was built with 77 samples distributed in the three watersheds of the study area located at Settat Ben-Ahmed, in Morocco and with the use of several environmental variables such as soil parameters (organic matter and clay), remote sensing indices (band 2, band 3, band 4, band 5, normalized difference vegetation index (NDVI) and transformed normalized difference vegetation index (TNDVI)), topography (elevation, slope, curvature plane and the topographic wetness index (TWI)) along with additional categorical variables as geological maps, land use and soil classes. The results showed a good level of accuracy for the training phase (75% of samples) for the different tests ( R 2 > 0.92, RMSE and MAE < 0.15) and were satisfactory for the testing phase (25% of samples, R 2 > 0.65, RMSE and MAE < 0.31). Also, organic matter, topography and geology were the most important parameters in the spatial prediction of SAS. Finally, the maps build during this study could be of great use to identify areas of less stable soils in the perspective for taking the necessary measures to improve their quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助彪壮的凌寒采纳,获得10
刚刚
七号彩虹岛完成签到 ,获得积分10
2秒前
4秒前
5秒前
5秒前
今晚吃什么完成签到,获得积分20
5秒前
务实的丹南完成签到,获得积分10
6秒前
ankang发布了新的文献求助30
7秒前
漫漫楚威风完成签到,获得积分10
8秒前
cortex发布了新的文献求助10
9秒前
李健应助悄悄采纳,获得10
11秒前
思源应助正直虔采纳,获得10
13秒前
13秒前
14秒前
欣喜蘑菇完成签到,获得积分10
14秒前
16秒前
阳阳发布了新的文献求助10
16秒前
18秒前
18秒前
19秒前
19秒前
hetao发布了新的文献求助10
22秒前
22秒前
周周发布了新的文献求助10
22秒前
奋斗画板完成签到,获得积分10
23秒前
25秒前
25秒前
田様应助哆哆采纳,获得10
25秒前
乐乐应助负责的含玉采纳,获得10
25秒前
小山隹发布了新的文献求助10
25秒前
完美世界应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
无名老大应助科研通管家采纳,获得20
26秒前
英姑应助科研通管家采纳,获得100
26秒前
搜集达人应助科研通管家采纳,获得30
26秒前
26秒前
852应助科研通管家采纳,获得10
26秒前
冷酷莫言发布了新的文献求助10
26秒前
Akim应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得10
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412724
求助须知:如何正确求助?哪些是违规求助? 3015318
关于积分的说明 8869744
捐赠科研通 2703064
什么是DOI,文献DOI怎么找? 1482010
科研通“疑难数据库(出版商)”最低求助积分说明 685108
邀请新用户注册赠送积分活动 679781