Promoting Rechargeable Batteries Operated at Low Temperature

电解质 阳极 电池(电) 扩散 电化学 锂(药物) 化学工程 储能 材料科学 化学 电极 纳米技术 热力学 物理 工程类 内分泌学 物理化学 功率(物理) 医学
作者
Xiaoli Dong,Yonggang Wang,Yongyao Xia
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (20): 3883-3894 被引量:141
标识
DOI:10.1021/acs.accounts.1c00420
摘要

ConspectusBuilding rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric vehicles, grid energy storage, defense/space/subsea explorations, and so forth. Commercialized nonaqueous lithium ion batteries generally adapt to a temperature above -20 °C, which cannot well meet the requirements under colder conditions. Certain improvements have been achieved with nascent materials and electrolyte systems but have mainly been restrained to discharge and within a small rate at temperatures above -40 °C. Moreover, the recharging process of batteries based on the graphite anode still faces huge challenges from the simultaneous Li+ intercalation and potential Li stripping at subzero temperatures. Revealing the temperature-dependent evolution of physicochemical and electrochemical properties will greatly benefit our understanding of the limiting factors at low temperature, which is of significant importance.Herein, we dissect the ion movements in the liquid electrolyte and solid electrode as well as their interphase to analyze the temperature effect on Li+-diffusion behavior during charging/discharging processes. An electrolyte is the vital factor, and its ionic conductivity guarantees the smooth operation of the battery. However, it is the sluggish diffusion in the solid, especially the charge transfer at the solid electrolyte/electrode interfaces (SEI), that greatly limits the kinetics at low temperature. Many strategies have been put forward to tame electrolytes for low-temperature application. From a macroscopic point of view, multiple solvents are mixed to adjust the liquid temperature range and viscosity. With respect to the microscopic nature, research is focusing on the solvation structure by formulating the ratio of Li+ ions to solvent molecules. The binding energy of the Li+-solvent complex is crucial for the desolvation process at low temperature, which is manipulated with fluorinated solvents or other weakly solvating electrolytes. On the basis of an optimized electrolyte, electrodes and their reaction mechanism need to be coupled carefully because different materials show totally different responses to temperature change. To avoid the sluggish desolvation process or slow diffusion in the bulk intercalation compounds, several kinds of materials are summarized for low temperature use. The intercalation pseudocapacitive behavior can compensate for the kinetics to some extent, and a metal anode is a good candidate for replacing a graphite anode to build high-energy-density batteries at subzero temperature. It is also a wise choice to develop nascent battery chemistry based on the co-intercalation of solvent molecules into electrodes. Furthermore, the interfacial resistance contributes a lot at low temperature, which need be modified to accelerate the Li+ diffusion across the film. This will be linked to the electrolyte, exactly speaking, the solvation structure, to regulate the organic and inorganic components as well as the structure. Although it is difficult to investigate SEI on a graphite anode owing to its poor performance at low temperature, great efforts on Li metal anodes have offered some valuable information as reference. It is worth mentioning that the improvement in low-temperature performance calls for not only a change in the single composition but also the synergetic effect of each part in the whole battery. The elementary studies covered in this account could be taken as insight into some key strategies that help advance the low-temperature battery chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttkx发布了新的文献求助10
刚刚
刚刚
nan发布了新的文献求助10
刚刚
dssf完成签到,获得积分10
1秒前
1秒前
M1K011110发布了新的文献求助10
2秒前
情怀应助ah爱科研采纳,获得10
2秒前
汉堡包应助小小阿杰采纳,获得10
4秒前
张贵虎发布了新的文献求助10
5秒前
jisnoalia发布了新的文献求助10
5秒前
殷勤的聪健完成签到,获得积分10
5秒前
8秒前
9秒前
空白的卡卡完成签到,获得积分10
10秒前
10秒前
wanci应助zjq采纳,获得10
11秒前
13秒前
噗噗xie发布了新的文献求助10
13秒前
ah爱科研发布了新的文献求助10
14秒前
阿幽完成签到 ,获得积分10
15秒前
大方的寻雪完成签到,获得积分10
16秒前
17秒前
谷子发布了新的文献求助10
17秒前
18秒前
jisnoalia完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
21秒前
21秒前
秋叶关注了科研通微信公众号
22秒前
6680668发布了新的文献求助10
22秒前
九月发布了新的文献求助30
23秒前
23秒前
23秒前
kkkkkkkkkkk完成签到,获得积分10
24秒前
Davy_Y发布了新的文献求助10
25秒前
ah爱科研完成签到,获得积分20
25秒前
盛清让发布了新的文献求助10
26秒前
圆锥香蕉应助mio采纳,获得20
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959583
求助须知:如何正确求助?哪些是违规求助? 3505844
关于积分的说明 11126416
捐赠科研通 3237765
什么是DOI,文献DOI怎么找? 1789326
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802963