光催化
水滑石
材料科学
煅烧
吸附
降级(电信)
催化作用
纳米复合材料
氧化物
层状双氢氧化物
化学工程
污染物
复合数
金属
镁
复合材料
化学
冶金
有机化学
工程类
电信
计算机科学
作者
Mingwei Yu,Lianhong Zhang,Jie Wen,Hui Zhang,Faping Liu,Yanjun Lv,Xiaodong Zhao
标识
DOI:10.1007/s10904-021-02166-z
摘要
The remove of the organic pollutants in water plays an important role on the environmental protection, thus photocatalysis, as an effective method, has been attained much attention to deal with this problem. In this paper, a composite of g-C3N4 and Mg–Al hydrotalcite derived metal oxides was prepared by simple co-precipitation methods followed by calcination. The effective adsorption-photocatalysis synergic effect and highly efficient removal of organic pollutants from water under simulated sunlight irradiation was found in the presence of fabricated metal oxide nanocomposites. The photocatalytic degradation rate of methylene blue reached 97.3% within 1 h under visible light, and the degradation rate constant was 0.0432 min−1, which is 3.6 times that of g-C3N4. Though characterization analysis, more active sites are exposed to absorb more organic pollutants on the mater surface in the presence of the open hierarchical structures of composite materials, and the "face to face" contact structure between 2D materials is formed to promote the separation of electrons and holes. The photocatalytic degradation was stable in the recycling process of the catalyst. In addition, the photocatalytic degradation mechanism of the catalyst was explained by free radical scavenging experiment. The material provides an effective method for removing organic pollutants in water, and has broad application prospects.
科研通智能强力驱动
Strongly Powered by AbleSci AI