Inland water quality parameters retrieval based on the VIP-SPCA by hyperspectral remote sensing

高光谱成像 主成分分析 遥感 环境科学 水质 偏最小二乘回归 均方误差 相关系数 降维 计算机科学 数学 人工智能 统计 机器学习 地理 生物 生态学
作者
Xinhui Wang,Cailan Gong,Tiemei Ji,Yong Hu,Lan Li
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:15 (04) 被引量:10
标识
DOI:10.1117/1.jrs.15.042609
摘要

Hyperspectral remote sensing is considered an effective tool for monitoring inland water quality. Non-optically active water quality parameters are of great significance to the aquatic environment, although they are rarely used in practical remote sensing applications. This study aims to improve the performance of non-optically active water quality parameter retrieval models by optimizing the wavelength selection and apply to the newly hyperspectral imagery from the Advanced HyperSpectral Imager (AHSI) and Orbita HyperSpectral (OHS) sensors. Focusing on dissolved oxygen, chemical oxygen demand (COD), ammonia nitrogen, and total phosphorus (TP), we propose a hyperspectral dimension reduction method based on the variable importance projection (VIP) and segmented principal component analysis (SPCA) method to determine the sensitive bands of different water quality parameters. A total of 81 in-situ samples of water quality parameters and water spectral reflectance were collected in Shanghai between 2018 and 2019. These were analyzed and used to establish quantitative retrieval models. Furthermore, the principal component regression, partial least squares regression, and back-propagation (BP) network models were compared and partly applied to satellite hyperspectral images. The final results show that models based on VIP-SPCA performed better in the validation set, and the best model was COD estimated by BP (VIP-SPCA) with a coefficient of determination (R2) raised from 0.56 to 0.74. The mean absolute percentage error ranged from 14.23% (COD) to 24.11% (TP). Overall, the AHSI and OHS concentration maps had consistent spatial distributions with monthly monitoring data and reasonable concentration levels. Therefore, the results validate the great potential of hyperspectral remote sensing for inland water quality parameter retrieval using VIP-SPCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷依秋完成签到,获得积分10
刚刚
邱忠瑜完成签到,获得积分20
刚刚
1秒前
dryao完成签到,获得积分10
1秒前
GDY完成签到,获得积分10
2秒前
Jeff发布了新的文献求助10
2秒前
小米完成签到,获得积分10
3秒前
zy大章鱼完成签到,获得积分10
4秒前
欢呼问旋完成签到,获得积分10
4秒前
RadiantYT完成签到,获得积分10
4秒前
曙光完成签到,获得积分10
5秒前
FashionBoy应助无限的海豚采纳,获得10
5秒前
蓝天碧海小西服完成签到,获得积分0
7秒前
jiaaniu完成签到 ,获得积分10
7秒前
7秒前
MM完成签到,获得积分10
8秒前
小科完成签到,获得积分10
8秒前
敏感的山晴完成签到 ,获得积分10
8秒前
杨秋月完成签到,获得积分10
9秒前
Psy完成签到,获得积分10
10秒前
七十二莳发布了新的文献求助10
10秒前
Ryan完成签到,获得积分10
10秒前
13秒前
Yara.H完成签到 ,获得积分10
13秒前
杳鸢应助yy采纳,获得10
14秒前
唐人达完成签到,获得积分10
14秒前
GDY发布了新的文献求助10
15秒前
15秒前
XIEMIN完成签到,获得积分10
16秒前
MaYi完成签到,获得积分10
17秒前
奋斗发布了新的文献求助10
19秒前
二月兰完成签到 ,获得积分10
19秒前
七十二莳完成签到,获得积分10
19秒前
李健应助jovrtic采纳,获得10
20秒前
OIIII应助唐人达采纳,获得20
20秒前
21秒前
再生极强的-涡虫完成签到,获得积分10
23秒前
无限的海豚完成签到,获得积分20
23秒前
优美的莹芝完成签到,获得积分10
24秒前
Dream点壹完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950009
求助须知:如何正确求助?哪些是违规求助? 3495337
关于积分的说明 11076302
捐赠科研通 3225863
什么是DOI,文献DOI怎么找? 1783324
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839