Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll‐a content: A case study in the Tri An Reservoir, Vietnam

原位 机器学习 算法 人工智能 遥感 环境科学 叶绿素 计算机科学 地质学 植物 气象学 生物 物理
作者
Nguyen Hao Quang,Nam Thang Ha,Nguyễn Ngọc Lâm,Thanh‐Luu Pham
出处
期刊:Water Environment Research [Wiley]
卷期号:93 (12): 2941-2957 被引量:19
标识
DOI:10.1002/wer.1643
摘要

Chlorophyll-a (Chl-a) is one of the most important indicators of the trophic status of inland waters, and its continued monitoring is essential. Recently, the operated Sentinel-2 MSI satellite offers high spatial resolution images for remote water quality monitoring. In this study, we tested the performance of the three well-known machine learning (ML) (random forest [RF], support vector machine [SVM], and Gaussian process [GP]) and the two novel ML (extreme gradient boost (XGB) and CatBoost [CB]) models for estimation a wide range of Chl-a concentration (10.1-798.7 μg/L) using the Sentinel-2 MSI data and in situ water quality measurement in the Tri An Reservoir (TAR), Vietnam. GP indicated the most reliable model for predicting Chl-a from water quality parameters (R2 = 0.85, root-mean-square error [RMSE] = 56.65 μg/L, Akaike's information criterion [AIC] = 575.10, and Bayesian information criterion [BIC] = 595.24). Regarding input model as water surface reflectance, CB was the superior model for Chl-a retrieval (R2 = 0.84, RMSE = 46.28 μg/L, AIC = 229.18, and BIC = 238.50). Our results indicated that GP and CB are the two best models for the prediction of Chl-a in TAR. Overall, the Sentinel-2 MSI coupled with ML algorithms is a reliable, inexpensive, and accurate instrument for monitoring Chl-a in inland waters. PRACTITIONER POINTS: Machine learning algorithms were used for both remote sensing data and in situ water quality measurements. The performance of five well-known machine learning models was tested Gaussian process was the most reliable model for predicting Chl-a from water quality parameters CatBoost was the best model for Chl-a retrieval from water surface reflectance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
刚刚
咚咚咚完成签到,获得积分10
1秒前
隐形曼青应助青青子衿采纳,获得10
1秒前
今后应助潇湘雪月采纳,获得10
2秒前
NexusExplorer应助crazy采纳,获得10
2秒前
Ava应助超帅青烟采纳,获得10
2秒前
Luffa完成签到,获得积分10
3秒前
moxi摩西发布了新的文献求助10
4秒前
6秒前
追寻电脑发布了新的文献求助10
6秒前
佳佳佳发布了新的文献求助30
9秒前
脑洞疼应助袁超采纳,获得30
10秒前
潇洒的白凝完成签到,获得积分10
14秒前
123完成签到,获得积分10
15秒前
15秒前
qphys完成签到,获得积分10
16秒前
hyf发布了新的文献求助10
16秒前
mjf111完成签到,获得积分10
19秒前
20秒前
wsj发布了新的文献求助10
20秒前
烟酒不离生完成签到,获得积分10
21秒前
22秒前
Jasper应助xyj6486采纳,获得10
23秒前
23秒前
25秒前
于平川春野完成签到 ,获得积分10
25秒前
汉堡包应助我不吃胡萝卜采纳,获得10
27秒前
27秒前
英姑应助潇湘雪月采纳,获得10
27秒前
Xw发布了新的文献求助10
27秒前
28秒前
种花家的狗狗完成签到,获得积分10
28秒前
wanci应助wsj采纳,获得10
30秒前
李昕123完成签到 ,获得积分10
31秒前
超帅青烟发布了新的文献求助10
31秒前
友好的睫毛完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
33秒前
木皆完成签到,获得积分10
35秒前
37秒前
ChatGPT发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174