🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

From Known to Unknown: Knowledge-guided Transformer for Time-Series Sales Forecasting in Alibaba

计算机科学 水准点(测量) 一致性(知识库) 需求预测 变压器 领域知识 晋升(国际象棋) 运筹学 营销 业务 知识管理 人工智能 工程类 电压 电气工程 大地测量学 政治 法学 政治学 地理
作者
Xinyuan Qi,Kai Hou,Tong Liu,Zhongzhong Yu,Sihao Hu,Wenwu Ou
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2109.08381
摘要

Time series forecasting (TSF) is fundamentally required in many real-world applications, such as electricity consumption planning and sales forecasting. In e-commerce, accurate time-series sales forecasting (TSSF) can significantly increase economic benefits. TSSF in e-commerce aims to predict future sales of millions of products. The trend and seasonality of products vary a lot, and the promotion activity heavily influences sales. Besides the above difficulties, we can know some future knowledge in advance except for the historical statistics. Such future knowledge may reflect the influence of the future promotion activity on current sales and help achieve better accuracy. However, most existing TSF methods only predict the future based on historical information. In this work, we make up for the omissions of future knowledge. Except for introducing future knowledge for prediction, we propose Aliformer based on the bidirectional Transformer, which can utilize the historical information, current factor, and future knowledge to predict future sales. Specifically, we design a knowledge-guided self-attention layer that uses known knowledge's consistency to guide the transmission of timing information. And the future-emphasized training strategy is proposed to make the model focus more on the utilization of future knowledge. Extensive experiments on four public benchmark datasets and one proposed large-scale industrial dataset from Tmall demonstrate that Aliformer can perform much better than state-of-the-art TSF methods. Aliformer has been deployed for goods selection on Tmall Industry Tablework, and the dataset will be released upon approval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Sherry99采纳,获得10
刚刚
刚刚
郁金香发布了新的文献求助10
1秒前
snowy_owl发布了新的文献求助30
1秒前
lxgz完成签到 ,获得积分10
1秒前
无花果应助zctf1000采纳,获得10
1秒前
隆咚锵发布了新的文献求助10
1秒前
2秒前
慕青应助11111采纳,获得30
2秒前
aiming发布了新的文献求助10
2秒前
蜡笔小鑫完成签到,获得积分10
2秒前
李昆朋发布了新的文献求助10
2秒前
wsfwsf01发布了新的文献求助10
2秒前
科研通AI5应助啊啊啊采纳,获得10
3秒前
3秒前
欧阳铭发布了新的文献求助10
3秒前
兰兰完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
英俊的铭应助wsfwsf01采纳,获得10
7秒前
传奇3应助冬虫草采纳,获得10
7秒前
领导范儿应助kakak采纳,获得10
7秒前
包傲柔完成签到,获得积分10
7秒前
surfing发布了新的文献求助10
8秒前
8秒前
8秒前
糊涂的剑完成签到,获得积分10
8秒前
RR完成签到,获得积分10
8秒前
义气严青发布了新的文献求助10
8秒前
8秒前
细心的逍遥完成签到,获得积分10
9秒前
9秒前
aiming完成签到,获得积分10
9秒前
英俊的铭应助冰冰采纳,获得10
10秒前
10秒前
NexusExplorer应助王醉山采纳,获得10
10秒前
麦当劳薯条冰激凌完成签到,获得积分10
11秒前
糊涂的剑发布了新的文献求助10
11秒前
852应助隆咚锵采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Primate Tourism: A Tool for Conservation? 500
The Dynamics of Plant Growth 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3598827
求助须知:如何正确求助?哪些是违规求助? 3167160
关于积分的说明 9554217
捐赠科研通 2873609
什么是DOI,文献DOI怎么找? 1577744
邀请新用户注册赠送积分活动 741705
科研通“疑难数据库(出版商)”最低求助积分说明 724830