Engineering of Battery Type Electrodes for High Performance Lithium Ion Hybrid Supercapacitors

阳极 超级电容器 阴极 材料科学 制作 电池(电) 电极 电解质 锂(药物) 纳米棒 储能 化学工程 电化学 纳米技术 化学 物理 物理化学 工程类 内分泌学 医学 病理 功率(物理) 量子力学 替代医学
作者
Navajsharif S. Shaikh,Pongsakorn Kanjanaboos,Vaibhav C. Lokhande,Supareak Praserthdam,C.D. Lokhande,Jasmin S. Shaikh
出处
期刊:ChemElectroChem [Wiley]
卷期号:8 (24): 4686-4724 被引量:15
标识
DOI:10.1002/celc.202100781
摘要

Abstract The researchers across the globe are working on improvement in energy density of supercapacitor without compromising its inherent supercapacitive properties. [1–4] The upgraded hybrid supercapacitor is derived from a battery type anode, a capacitive type cathode and organic electrolyte. However, the performance of hybrid supercapacitor is limited by the imbalance kinetics between the anode and cathode due to sluggish Faradic reaction of anode materials and less charge storage capacity of cathode materials. The design and development of lithium ion hybrid supercapacitor (LIC) can be possible by engineering anode, cathode and electrolyte materials. In this review, we focus on the evolution of anode materials for LICs fabrication. Different strategies to balance the kinetics between the cathode and the anode have already been reported, such as the engineering of novel materials and fabrication of different nanoarchitectures. LICs have been fabricated by tailoring different nanoarchitectures such as particles (0D), nanorods/nanowires/nanotubes (1D), thin sheets (2D) and hierarchical architectures (3D). The fabrication of nanostructured active materials with desired morphology (0D, 1D, 2D and 3D) and sizes with high aspect ratios facilitate fast lithium‐ion insertion and extraction. The anode materials are divided into three types (i) lithium insertion reaction mechanism (ii) conversion reaction mechanism (iii) and the alloying reaction mechanism. The lithium insertion reaction‐based materials have high stability whereas less capacity and energy density. In contrast to this, the conversion type electrodes have high energy density but low stability. Alloying type materials have ultra‐high energy density while very low stability and reversibility. Hence, for getting high performance LIC all above mentioned aspects are required to be considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
michaelvin完成签到,获得积分10
1秒前
学术大白完成签到 ,获得积分10
4秒前
4秒前
SYT完成签到,获得积分10
5秒前
6秒前
8秒前
8秒前
8秒前
9秒前
9秒前
魏伯安发布了新的文献求助10
9秒前
9秒前
zhouleiwang完成签到,获得积分10
10秒前
李爱国应助aiming采纳,获得10
11秒前
无奈傲菡完成签到,获得积分10
12秒前
TT发布了新的文献求助10
12秒前
啦啦啦发布了新的文献求助10
13秒前
sun发布了新的文献求助10
14秒前
荣荣完成签到,获得积分10
14秒前
15秒前
小安完成签到,获得积分10
16秒前
Spencer完成签到 ,获得积分10
16秒前
PengHu完成签到,获得积分10
17秒前
17秒前
19秒前
21秒前
21秒前
21秒前
ywang发布了新的文献求助10
22秒前
失眠虔纹完成签到,获得积分10
22秒前
斯文败类应助nextconnie采纳,获得10
22秒前
药学牛马发布了新的文献求助10
26秒前
26秒前
27秒前
30秒前
张无缺完成签到,获得积分10
33秒前
35秒前
CodeCraft应助MES采纳,获得10
36秒前
笨笨乘风完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849