Engineering of Battery Type Electrodes for High Performance Lithium Ion Hybrid Supercapacitors

阳极 超级电容器 阴极 材料科学 制作 电池(电) 电极 电解质 锂(药物) 纳米棒 储能 化学工程 电化学 纳米技术 化学 物理 物理化学 工程类 内分泌学 医学 病理 功率(物理) 量子力学 替代医学
作者
Navajsharif S. Shaikh,Pongsakorn Kanjanaboos,Vaibhav C. Lokhande,Supareak Praserthdam,C.D. Lokhande,Jasmin S. Shaikh
出处
期刊:ChemElectroChem [Wiley]
卷期号:8 (24): 4686-4724 被引量:13
标识
DOI:10.1002/celc.202100781
摘要

Abstract The researchers across the globe are working on improvement in energy density of supercapacitor without compromising its inherent supercapacitive properties. [1–4] The upgraded hybrid supercapacitor is derived from a battery type anode, a capacitive type cathode and organic electrolyte. However, the performance of hybrid supercapacitor is limited by the imbalance kinetics between the anode and cathode due to sluggish Faradic reaction of anode materials and less charge storage capacity of cathode materials. The design and development of lithium ion hybrid supercapacitor (LIC) can be possible by engineering anode, cathode and electrolyte materials. In this review, we focus on the evolution of anode materials for LICs fabrication. Different strategies to balance the kinetics between the cathode and the anode have already been reported, such as the engineering of novel materials and fabrication of different nanoarchitectures. LICs have been fabricated by tailoring different nanoarchitectures such as particles (0D), nanorods/nanowires/nanotubes (1D), thin sheets (2D) and hierarchical architectures (3D). The fabrication of nanostructured active materials with desired morphology (0D, 1D, 2D and 3D) and sizes with high aspect ratios facilitate fast lithium‐ion insertion and extraction. The anode materials are divided into three types (i) lithium insertion reaction mechanism (ii) conversion reaction mechanism (iii) and the alloying reaction mechanism. The lithium insertion reaction‐based materials have high stability whereas less capacity and energy density. In contrast to this, the conversion type electrodes have high energy density but low stability. Alloying type materials have ultra‐high energy density while very low stability and reversibility. Hence, for getting high performance LIC all above mentioned aspects are required to be considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
hino完成签到 ,获得积分10
5秒前
5秒前
wocao完成签到 ,获得积分20
6秒前
哈哈发布了新的文献求助10
6秒前
volcanoes完成签到,获得积分10
6秒前
林贞宝宝发布了新的文献求助10
6秒前
谷鸿飞完成签到,获得积分10
7秒前
冷静的伊完成签到,获得积分10
7秒前
8秒前
Owen应助乐乐乐乐乐乐采纳,获得10
8秒前
9秒前
大个应助乐乐乐乐乐乐采纳,获得10
9秒前
烟花应助乐乐乐乐乐乐采纳,获得10
9秒前
小二郎应助乐乐乐乐乐乐采纳,获得10
9秒前
10秒前
奔跑石小猛完成签到,获得积分10
11秒前
volcanoes发布了新的文献求助10
14秒前
科研通AI2S应助干净松采纳,获得10
17秒前
Foremelon发布了新的文献求助10
23秒前
耶耶耶完成签到,获得积分10
24秒前
哈哈完成签到,获得积分10
24秒前
净禅完成签到 ,获得积分10
25秒前
善学以致用应助林贞宝宝采纳,获得10
26秒前
啦啦啦啦完成签到,获得积分10
27秒前
干净松完成签到,获得积分10
28秒前
111完成签到,获得积分10
28秒前
YYJ完成签到,获得积分20
33秒前
35秒前
100完成签到,获得积分10
36秒前
66完成签到 ,获得积分10
36秒前
拓跋幻枫完成签到,获得积分10
37秒前
40秒前
yehata发布了新的文献求助30
40秒前
Owen应助ademwy采纳,获得10
42秒前
ximomm完成签到,获得积分10
43秒前
冷静的夏槐关注了科研通微信公众号
43秒前
45秒前
完美世界应助陈曦采纳,获得10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162896
求助须知:如何正确求助?哪些是违规求助? 2813938
关于积分的说明 7902359
捐赠科研通 2473525
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187