Interfacial Solar Vapor Generation: Materials and Structural Design

材料科学 水蒸气 蒸发 海水淡化 太阳能 工艺工程 热的 传热 热力学 环境科学 化学 工程类 生物化学 生物 物理 有机化学 生态学
作者
Xinzhe Min,Bin Zhu,Bo Li,Jinlei Li,Jia Zhu
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:2 (4): 198-209 被引量:101
标识
DOI:10.1021/accountsmr.0c00104
摘要

ConspectusThe global water scarcity and deteriorating environment call for the development of environmentally friendly water treatment technologies. Solar-driven evaporation, well-known as a critical step of water cycles, provides a natural inspiration for water treatment and purification with a minimized carbon footprint. The emergence of interfacial solar vapor generation enabled through carefully tailored materials design in recent years offers an effective approach to enhance solar evaporation, with unique thermodynamic and kinetic advantages. Thermodynamically, by localizing absorbed solar energy at the water surface to avoid thermal dissipation into the entire body of water, high solar vapor transfer efficiency can be achieved. Kinetically, because of reduced thermal mass, a short response time of vapor generation and fast ramping of vapor temperature can be expected.In this perspective review, we start by exhibiting the structural designs of interfacial solar vapor generators to improve the energy transfer efficiency and evaporation rate: first, tuning optical structures to improve the light absorption; second, designing a two-dimensional water path and bioinspired structures to reduce the heat loss; third, harvesting environmental energy as an extra energy input to further increase the evaporation rate. Then, we demonstrate the intrinsic thermodynamic and kinetic advantages of interfacial solar evaporation for various applications. On the thermodynamic side, low energy loss and a high evaporation rate enable effective desalination and water treatment. While on the kinetic side, quick-response and high-temperature steam generation has direct implications in fields like sterilization and power generation. In the end, we briefly conclude the main challenges in fundamental and technical aspects as well as discuss various promising pathways for future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助zhangxr采纳,获得10
刚刚
1秒前
sunshine应助整齐的远侵采纳,获得10
2秒前
科研通AI2S应助浅夏采纳,获得10
3秒前
4秒前
李堃发布了新的文献求助10
4秒前
潘宇霜发布了新的文献求助20
6秒前
阿a完成签到,获得积分10
7秒前
科研通AI2S应助Sophist采纳,获得10
7秒前
7秒前
8秒前
深情映冬发布了新的文献求助10
8秒前
maoli发布了新的文献求助10
9秒前
欣喜成仁发布了新的文献求助10
9秒前
积极慕梅应助浪沧一刀采纳,获得10
9秒前
Ethan发布了新的文献求助10
10秒前
飓风完成签到 ,获得积分10
10秒前
10秒前
12秒前
尔池完成签到,获得积分10
12秒前
科研通AI2S应助整齐的远侵采纳,获得10
12秒前
龙辉发布了新的文献求助10
12秒前
Rekaka发布了新的文献求助10
13秒前
Akim应助小陈采纳,获得30
13秒前
Jasper应助毛毛采纳,获得30
14秒前
14秒前
汤圆发布了新的文献求助10
16秒前
16秒前
科目三应助动听的薯条采纳,获得10
17秒前
李喜喜发布了新的文献求助10
18秒前
19秒前
到家了发布了新的文献求助10
19秒前
bkagyin应助高贵紫槐采纳,获得10
20秒前
ocean给ocean的求助进行了留言
20秒前
21秒前
GH完成签到,获得积分10
21秒前
22秒前
SciGPT应助龙辉采纳,获得10
22秒前
万能图书馆应助周淡念采纳,获得10
23秒前
Lucas应助友好的半仙采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146066
求助须知:如何正确求助?哪些是违规求助? 2797486
关于积分的说明 7824486
捐赠科研通 2453874
什么是DOI,文献DOI怎么找? 1305891
科研通“疑难数据库(出版商)”最低求助积分说明 627598
版权声明 601491