亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors

扩散 快离子导体 锂(药物) 离子键合 导线 离子 电解质 计算机科学 水准点(测量) 离子电导率 计算 工作(物理) 统计物理学 材料科学 化学 热力学 算法 物理 物理化学 内分泌学 复合材料 有机化学 医学 电极 地理 大地测量学
作者
Jianxing Huang,Linfeng Zhang,Han Wang,Jinbao Zhao,Jun Cheng,E Weinan
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:154 (9) 被引量:97
标识
DOI:10.1063/5.0041849
摘要

It has been a challenge to accurately simulate Li-ion diffusion processes in battery materials at room temperature using {\it ab initio} molecular dynamics (AIMD) due to its high computational cost. This situation has changed drastically in recent years due to the advances in machine learning-based interatomic potentials. Here we implement the Deep Potential Generator scheme to \textit{automatically} generate interatomic potentials for LiGePS-type solid-state electrolyte materials. This increases our ability to simulate such materials by several orders of magnitude without sacrificing {\it ab initio} accuracy. Important technical aspects like the statistical error and size effects are carefully investigated. We further establish a reliable protocol for accurate computation of Li-ion diffusion processes at experimental conditions, by investigating important technical aspects like the statistical error and size effects. Such a protocol and the automated workflow allow us to screen materials for their relevant properties with much-improved efficiency. By using the protocol and automated workflow developed here, we obtain the diffusivity data and activation energies of Li-ion diffusion that agree well with the experiment. Our work paves the way for future investigation of Li-ion diffusion mechanisms and optimization of Li-ion conductivity of solid-state electrolyte materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
今后应助Guts采纳,获得10
5秒前
动听凌柏完成签到,获得积分10
5秒前
6秒前
他也蓝发布了新的文献求助10
6秒前
飞鞚发布了新的文献求助10
9秒前
文静人达完成签到,获得积分10
11秒前
他也蓝完成签到,获得积分10
16秒前
青柠完成签到 ,获得积分10
20秒前
nina完成签到 ,获得积分10
21秒前
21秒前
Ming完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
皮皮完成签到 ,获得积分10
32秒前
SimonShaw完成签到 ,获得积分10
33秒前
40秒前
kk_1315完成签到,获得积分0
45秒前
敬业乐群完成签到,获得积分10
47秒前
59秒前
学术小菜鸟完成签到 ,获得积分10
1分钟前
Guts发布了新的文献求助10
1分钟前
木有完成签到 ,获得积分10
1分钟前
Bin_Liu完成签到,获得积分20
1分钟前
1分钟前
1分钟前
画星星发布了新的文献求助10
1分钟前
amengptsd完成签到,获得积分10
1分钟前
crx发布了新的文献求助10
1分钟前
1分钟前
大模型应助crx采纳,获得10
1分钟前
1分钟前
1分钟前
echo发布了新的文献求助10
1分钟前
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
小昭发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754768
求助须知:如何正确求助?哪些是违规求助? 5489338
关于积分的说明 15380586
捐赠科研通 4893238
什么是DOI,文献DOI怎么找? 2631830
邀请新用户注册赠送积分活动 1579747
关于科研通互助平台的介绍 1535552