Optimum Particle Size in Silicon Electrodes Dictated by Chemomechanical Deformation of the SEI

材料科学 粒径 粒子(生态学) 阳极 复合材料 电解质 电极 纳米颗粒 变形(气象学) 极限抗拉强度 纳米材料 化学工程 纳米技术 冶金 物理化学 工程类 化学 地质学 海洋学
作者
Mok Yun Jin,Kai Guo,Xingcheng Xiao,Mark W. Verbrugge,Huajian Gao,Brian W. Sheldon
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:31 (19) 被引量:14
标识
DOI:10.1002/adfm.202010640
摘要

Abstract Nanostructured alloy‐forming anode materials can resist fracture that is caused by extreme volume changes during cycling. However, the higher surface area per unit mass in nanomaterials increases exposure to the electrolyte reduction reactions that form a solid electrolyte interphase (SEI), which implies that capacity loss will increase as particle size decreases. This hypothesis is investigated with composite electrodes using different silicon nanoparticle sizes, and the expected particle size effect is not observed. Instead, there is an optimum particle size where capacity loss per volume is minimized. Finite element modeling demonstrates that the mechanical deformation of the SEI varies significantly with the silicon particle size. Smaller particles lead to the decrease of the tensile hoop strains in the outer portion of the SEI and simultaneously make the overall elastic strains in the inner portion more compressive. These results suggest that the SEI on smaller particles is more resistant to mechanical degradation, even though the higher specific surface areas increase initial SEI formation. The trade‐off between these effects leads to the observed optimum particle size.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨阳完成签到,获得积分10
刚刚
何hh发布了新的文献求助10
刚刚
小蘑菇应助konglingjie采纳,获得10
1秒前
wyy发布了新的文献求助10
1秒前
江山发布了新的文献求助10
1秒前
Liana_Liu完成签到,获得积分10
1秒前
xiaoyu发布了新的文献求助10
1秒前
lanlan发布了新的文献求助10
1秒前
吴彦祖完成签到,获得积分10
2秒前
2秒前
爆米花应助哈哈哈哈采纳,获得10
2秒前
典雅的靖仇完成签到,获得积分20
2秒前
2秒前
kk完成签到,获得积分10
3秒前
上官若男应助自知则知之采纳,获得10
3秒前
3秒前
蛋黄完成签到,获得积分10
3秒前
3秒前
4秒前
张嘉元驳回了wan应助
4秒前
科研通AI6应助gaga采纳,获得10
4秒前
汉堡包应助潇洒台灯采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助huhdcid采纳,获得10
5秒前
科研通AI6应助cL采纳,获得30
5秒前
5秒前
韩梦兮完成签到,获得积分10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
玄风应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
wyy完成签到,获得积分20
6秒前
科目三应助科研通管家采纳,获得10
6秒前
玄风应助科研通管家采纳,获得10
6秒前
快乐丸子完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779