肌节
诱导多能干细胞
细胞生物学
肌动蛋白
胚胎干细胞
生物
提丁
活体细胞成像
心肌细胞
细胞
生物化学
细胞骨架
基因
作者
Razan Elfadil Ahmed,Nawin Chanthra,Tatsuya Anzai,Keiichiro Koiwai,Tomoki Murakami,Hiroaki Suzuki,Yutaka Hanazono,Hideki Uosaki
摘要
Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) can be produced from both embryonic and induced pluripotent stem (ES/iPS) cells. These cells provide promising sources for cardiac disease modeling. For cardiomyopathies, sarcomere shortening is one of the standard physiological assessments that are used with adult cardiomyocytes to examine their disease phenotypes. However, the available methods are not appropriate to assess the contractility of PSC-CMs, as these cells have underdeveloped sarcomeres that are invisible under phase-contrast microscopy. To address this issue and to perform sarcomere shortening with PSC-CMs, fluorescent-tagged sarcomere proteins and fluorescent live-imaging were used. Thin Z-lines and an M-line reside at both ends and the center of a sarcomere, respectively. Z-line proteins — α-Actinin (ACTN2), Telethonin (TCAP), and actin-associated LIM protein (PDLIM3) — and one M-line protein — Myomesin-2 (Myom2) — were tagged with fluorescent proteins. These tagged proteins can be expressed from endogenous alleles as knock-ins or from adeno-associated viruses (AAVs). Here, we introduce the methods to differentiate mouse and human pluripotent stem cells to cardiomyocytes, to produce AAVs, and to perform and analyze live-imaging. We also describe the methods for producing polydimethylsiloxane (PDMS) stamps for a patterned culture of PSC-CMs, which facilitates the analysis of sarcomere shortening with fluorescent-tagged proteins. To assess sarcomere shortening, time-lapse images of the beating cells were recorded at a high framerate (50-100 frames per second) under electrical stimulation (0.5-1 Hz). To analyze sarcomere length over the course of cell contraction, the recorded time-lapse images were subjected to SarcOptiM, a plug-in for ImageJ/Fiji. Our strategy provides a simple platform for investigating cardiac disease phenotypes in PSC-CMs.
科研通智能强力驱动
Strongly Powered by AbleSci AI