材料科学
电介质
复合材料
介电损耗
聚醚酰亚胺
纳米复合材料
钛酸钡
介电常数
陶瓷
聚合物
光电子学
作者
Xiaolian Xiang,Zhonglei Ma,Jiayao Jing,Borui Guo,Menghui Zhang,Ruochu Jiang,Liang Shao
标识
DOI:10.1002/adem.202100978
摘要
Dielectric materials with lightweight, high heat resistance, high dielectric permittivity, and low dielectric loss are highly desirable for dielectrics. Herein, lightweight and highly heat‐resistant microcellular polyetherimide/barium titanate/multiwalled carbon nanotube (PEI/BaTiO 3 /MWCNT) nanocomposites with high dielectric permittivity and low dielectric loss are fabricated via the efficient physically microcellular foaming method. The resultant microcellular PEI/BaTiO 3 /MWCNT nanocomposites with the BaTiO 3 /MWCNT content of 8 wt% exhibit a high dielectric permittivity of 18.7 and a low dielectric loss of 0.35 with a low relative density of 0.26. Owing to the heterogeneous cell nucleation effect, the microcellular PEI/BaTiO 3 /MWCNT nanocomposites present much more uniform cellular structures with larger cell density and smaller cell size compared with the microcellular PEI. The physically microcellular foaming slightly decreases the dielectric permittivity and dramatically decreases the dielectric loss of the nanocomposites. Compared with the solid and microcellular PEI/BaTiO 3 nanocomposites, the microcellular PEI/BaTiO 3 /MWCNT nanocomposites exhibit dramatically increased dielectric permittivity with low filler content. The results indicate that the lightweight and highly heat‐resistant microcellular PEI/BaTiO 3 /MWCNT nanocomposites with high dielectric permittivity and low dielectric loss have excellent potential for dielectrics in areas such as aerospace, electronics, and military engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI