Deep learning‐based robust medical image watermarking exploiting DCT and Harris hawks optimization

数字水印 水印 离散余弦变换 人工智能 计算机科学 像素 计算机视觉 有效载荷(计算) 块(置换群论) 算法 数学 模式识别(心理学) 图像(数学) 几何学 计算机网络 网络数据包
作者
Anusha Chacko,Shanty Chacko
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (8): 4810-4844 被引量:16
标识
DOI:10.1002/int.22742
摘要

Image watermarking is an effective way to secure the ownership of digital photographs. This paper proposes a new methodology for integrating a watermark on the basis of various integrative strengths. The image is separated as 8 × 8 pixels blocks that do not overlap. The pixel size for each image block has been determined. For the embedding areas, picture blocks with the highest value have been chosen. Therefore, discrete cosine transformation (DCT) is transformed. The DCT coefficients are chosen in the midfrequency and the average selected DCT blocks are determined using a series of rules to produce various integration strengths. The watermarking bits were merged with the proposed deep learning convolution neural network (DLCNN) through a series of integration standards. The binary watermark has been scrambled by an Arnold transform until it is incorporated for additional stability. During the image carrier, a pattern recognition model depending on DLCNN is utilized to identify and extract the watermark and to recognize the watermark using the Harris hawks optimization (HHO) algorithm. The findings of the tests demonstrated that the system suggested is most imperceptible than the other current systems. The proposed method attains the efficiency watermarked picture with 46 dB peak signal-to-noise ratio value. This paper focuses on robust medical image watermarking exploiting DCT by using the HHO algorithm. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the consolidation of DCT and image watermarking secret key. The performance of robust medical image watermarking exploiting DCT with the HHO algorithm is compared with other conventional compression methods. HHO is found better and used to control watermarked image degradation in medical images watermarking. The proposed system also created a high resistance to remove watermarks during many attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助猪猪hero采纳,获得10
11秒前
Jeffery426发布了新的文献求助10
12秒前
时代更迭完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
21秒前
luoyukejing完成签到,获得积分10
23秒前
幽默艳发布了新的文献求助10
27秒前
罗添龙发布了新的文献求助10
34秒前
W~舞发布了新的文献求助10
37秒前
唯梦完成签到 ,获得积分10
40秒前
优雅莞完成签到,获得积分10
40秒前
SciGPT应助ly采纳,获得10
40秒前
我是老大应助罗添龙采纳,获得10
45秒前
harry2021完成签到,获得积分10
49秒前
天水张家辉完成签到,获得积分10
49秒前
53秒前
烟火会翻滚完成签到,获得积分10
55秒前
酷波er应助科研通管家采纳,获得10
55秒前
55秒前
55秒前
ly发布了新的文献求助10
56秒前
dldldl完成签到,获得积分10
1分钟前
adazbq完成签到 ,获得积分0
1分钟前
1分钟前
喻雷发布了新的文献求助50
1分钟前
豆腐青菜雨完成签到 ,获得积分10
1分钟前
研友_西门孤晴完成签到,获得积分10
1分钟前
Joanne完成签到 ,获得积分10
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
浮云完成签到 ,获得积分10
1分钟前
蒲公英完成签到 ,获得积分10
1分钟前
犹豫的若完成签到,获得积分10
1分钟前
ZX801完成签到 ,获得积分10
1分钟前
Vegeta完成签到 ,获得积分10
1分钟前
不安愚志完成签到 ,获得积分10
1分钟前
火之高兴完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wx2360ouc完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218