Deep learning‐based robust medical image watermarking exploiting DCT and Harris hawks optimization

数字水印 水印 离散余弦变换 人工智能 计算机科学 像素 计算机视觉 有效载荷(计算) 块(置换群论) 算法 数学 模式识别(心理学) 图像(数学) 几何学 计算机网络 网络数据包
作者
Anusha Chacko,Shanty Chacko
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (8): 4810-4844 被引量:16
标识
DOI:10.1002/int.22742
摘要

Image watermarking is an effective way to secure the ownership of digital photographs. This paper proposes a new methodology for integrating a watermark on the basis of various integrative strengths. The image is separated as 8 × 8 pixels blocks that do not overlap. The pixel size for each image block has been determined. For the embedding areas, picture blocks with the highest value have been chosen. Therefore, discrete cosine transformation (DCT) is transformed. The DCT coefficients are chosen in the midfrequency and the average selected DCT blocks are determined using a series of rules to produce various integration strengths. The watermarking bits were merged with the proposed deep learning convolution neural network (DLCNN) through a series of integration standards. The binary watermark has been scrambled by an Arnold transform until it is incorporated for additional stability. During the image carrier, a pattern recognition model depending on DLCNN is utilized to identify and extract the watermark and to recognize the watermark using the Harris hawks optimization (HHO) algorithm. The findings of the tests demonstrated that the system suggested is most imperceptible than the other current systems. The proposed method attains the efficiency watermarked picture with 46 dB peak signal-to-noise ratio value. This paper focuses on robust medical image watermarking exploiting DCT by using the HHO algorithm. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the consolidation of DCT and image watermarking secret key. The performance of robust medical image watermarking exploiting DCT with the HHO algorithm is compared with other conventional compression methods. HHO is found better and used to control watermarked image degradation in medical images watermarking. The proposed system also created a high resistance to remove watermarks during many attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
刚刚
戚戚发布了新的文献求助10
1秒前
聪明月饼完成签到 ,获得积分10
2秒前
好好顶顶顶顶完成签到,获得积分10
2秒前
4秒前
cx完成签到,获得积分10
4秒前
5秒前
7秒前
wait发布了新的文献求助10
9秒前
10秒前
redglo给redglo的求助进行了留言
11秒前
CynthiaaaCat完成签到,获得积分10
11秒前
xiongyh10完成签到,获得积分10
12秒前
郭淳完成签到,获得积分10
12秒前
JamesPei应助ypeng采纳,获得10
12秒前
13秒前
luu发布了新的文献求助30
13秒前
wait完成签到,获得积分20
14秒前
15秒前
16秒前
16秒前
精明尔曼完成签到,获得积分10
17秒前
深情安青应助1234采纳,获得10
17秒前
NexusExplorer应助yingying采纳,获得10
19秒前
8812077完成签到,获得积分10
19秒前
20秒前
令狐新竹完成签到 ,获得积分10
21秒前
GnodNy发布了新的文献求助30
22秒前
美好斓发布了新的文献求助10
22秒前
哈哈哈完成签到,获得积分10
25秒前
长期素食发布了新的文献求助10
26秒前
菜菜鱼发布了新的文献求助20
27秒前
redglo完成签到,获得积分10
28秒前
你说的发布了新的文献求助10
29秒前
30秒前
天玄一刀发布了新的文献求助10
31秒前
31秒前
美好乐松应助777采纳,获得10
31秒前
李健应助杨九斤Jenney采纳,获得10
34秒前
35秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323