已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Survey on Driver Behavior Analysis From In-Vehicle Cameras

计算机科学 分散注意力 数据收集 任务(项目管理) 方向(向量空间) 分析 范围(计算机科学) 数据科学 人机交互 人工智能 工程类 系统工程 生物 统计 数学 神经科学 程序设计语言 几何学
作者
Jiyang Wang,Weiheng Chai,Archana Venkatachalapathy,Kai Liang Tan,Arya Haghighat,Senem Velipasalar,Yaw Adu-Gyamfi,Anuj Sharma
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10186-10209 被引量:22
标识
DOI:10.1109/tits.2021.3126231
摘要

Distracted or drowsy driving is unsafe driving behavior responsible for thousands of crashes every year. Studying driver behavior has challenges associated with observing drivers in their natural environment. The naturalistic driving study (NDS) has become the most sought-after approach, since it eliminates the bias of a controlled setup, allowing researchers to understand drivers’ behavior in real-world scenarios. Video recordings collected in NDS research are incredibly insightful in identifying driver errors. Computer vision techniques have been used to autonomously analyze video data and classify drivers’ behavior. While computer vision scientists focus on image analytics, NDS researchers are interested in the factors impacting driver behavior. This survey paper makes a concerted effort to serve both communities by comprehensively reviewing studies, describing their data collection, computer vision techniques implemented, and performance in classifying driver behavior. The scope is limited to studies employing at least one camera observing the driver inside a vehicle. Based on their objective, papers have been classified as detecting low-level (e.g. head orientation) or high-level (e.g. distraction detection) driver information. Papers have been further classified based on the datasets they employ. In addition to twelve public datasets, many private datasets have also been identified, and their data collection design is discussed to highlight any impact on model performance. Across each task, algorithms employed and their performance are discussed to establish a baseline. A comparison of different frameworks for NDS video data analytics throws light on the existing gaps in the state-of-the-art that can be addressed by future computer vision research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
渡己。发布了新的文献求助10
1秒前
3秒前
5秒前
生动丹珍完成签到 ,获得积分10
5秒前
Ziyi_Xu发布了新的文献求助10
6秒前
文艺安青完成签到,获得积分20
6秒前
10秒前
文艺安青发布了新的文献求助10
10秒前
飞向天空的牛完成签到,获得积分10
13秒前
Ziyi_Xu完成签到,获得积分10
17秒前
Ava应助科研通管家采纳,获得100
18秒前
qianzheng应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
杳鸢应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
刘刘完成签到 ,获得积分10
19秒前
haha完成签到,获得积分20
22秒前
24秒前
dxtmm发布了新的文献求助10
24秒前
chinh完成签到,获得积分10
26秒前
29秒前
芝士棒猪发布了新的文献求助10
30秒前
科研通AI2S应助sheila采纳,获得10
30秒前
31秒前
科研通AI2S应助Aria_chao采纳,获得10
35秒前
婷123完成签到 ,获得积分10
35秒前
35秒前
lovexz完成签到,获得积分10
36秒前
烟花应助xiaoyanyan采纳,获得10
38秒前
40秒前
林夕完成签到,获得积分10
42秒前
44秒前
善学以致用应助yumeng采纳,获得10
44秒前
吴彦祖发布了新的文献求助10
47秒前
幽悠梦儿完成签到 ,获得积分10
47秒前
胡萝贝完成签到,获得积分10
49秒前
49秒前
luoyulin完成签到,获得积分10
51秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219546
求助须知:如何正确求助?哪些是违规求助? 2868362
关于积分的说明 8160716
捐赠科研通 2535406
什么是DOI,文献DOI怎么找? 1367848
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618446