亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Survey on Driver Behavior Analysis From In-Vehicle Cameras

计算机科学 分散注意力 数据收集 任务(项目管理) 方向(向量空间) 分析 范围(计算机科学) 数据科学 人机交互 人工智能 工程类 系统工程 统计 几何学 数学 神经科学 生物 程序设计语言
作者
Jiyang Wang,Weiheng Chai,Archana Venkatachalapathy,Kai Liang Tan,Arya Haghighat,Senem Velipasalar,Yaw Adu-Gyamfi,Anuj Sharma
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10186-10209 被引量:22
标识
DOI:10.1109/tits.2021.3126231
摘要

Distracted or drowsy driving is unsafe driving behavior responsible for thousands of crashes every year. Studying driver behavior has challenges associated with observing drivers in their natural environment. The naturalistic driving study (NDS) has become the most sought-after approach, since it eliminates the bias of a controlled setup, allowing researchers to understand drivers’ behavior in real-world scenarios. Video recordings collected in NDS research are incredibly insightful in identifying driver errors. Computer vision techniques have been used to autonomously analyze video data and classify drivers’ behavior. While computer vision scientists focus on image analytics, NDS researchers are interested in the factors impacting driver behavior. This survey paper makes a concerted effort to serve both communities by comprehensively reviewing studies, describing their data collection, computer vision techniques implemented, and performance in classifying driver behavior. The scope is limited to studies employing at least one camera observing the driver inside a vehicle. Based on their objective, papers have been classified as detecting low-level (e.g. head orientation) or high-level (e.g. distraction detection) driver information. Papers have been further classified based on the datasets they employ. In addition to twelve public datasets, many private datasets have also been identified, and their data collection design is discussed to highlight any impact on model performance. Across each task, algorithms employed and their performance are discussed to establish a baseline. A comparison of different frameworks for NDS video data analytics throws light on the existing gaps in the state-of-the-art that can be addressed by future computer vision research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
13秒前
比比谁的速度快给Zephyr的求助进行了留言
50秒前
59秒前
Eileen发布了新的文献求助10
1分钟前
1分钟前
杨柳发布了新的文献求助10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Akim应助Eileen采纳,获得10
2分钟前
Zephyr发布了新的文献求助200
2分钟前
杨柳完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
情怀应助555557采纳,获得10
3分钟前
传奇3应助自信寻真采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
111111111完成签到,获得积分10
4分钟前
Rondab应助lankbki123采纳,获得10
4分钟前
ionicliquids发布了新的文献求助10
4分钟前
Jy完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
赫如冰完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
555557完成签到,获得积分10
5分钟前
聂青枫完成签到,获得积分10
5分钟前
黄黄黄应助Mannone采纳,获得10
5分钟前
5分钟前
5分钟前
555557发布了新的文献求助10
5分钟前
Liufgui应助Mannone采纳,获得10
5分钟前
5分钟前
hahah发布了新的文献求助10
5分钟前
小宋应助hahah采纳,获得20
5分钟前
hahah完成签到,获得积分20
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008132
求助须知:如何正确求助?哪些是违规求助? 3547942
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188