Dynamic Facial Expression Recognition Under Partial Occlusion With Optical Flow Reconstruction

人工智能 计算机科学 面部识别系统 计算机视觉 面部表情 面子(社会学概念) 表达式(计算机科学) 光流 闭塞 模式识别(心理学) 编码器 三维人脸识别 相似性(几何)
作者
Delphine Poux,Benjamin Allaert,Nacim Ihaddadene,Ioan Marius Bilasco,Chaabane Djeraba,Mohammed Bennamoun
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 446-457 被引量:1
标识
DOI:10.1109/tip.2021.3129120
摘要

Video facial expression recognition is useful for many applications and received much interest lately. Although some solutions give really good results in a controlled environment (no occlusion), recognition in the presence of partial facial occlusion remains a challenging task. To handle occlusions, solutions based on the reconstruction of the occluded part of the face have been proposed. These solutions are mainly based on the texture or the geometry of the face. However, the similarity of the face movement between different persons doing the same expression seems to be a real asset for the reconstruction. In this paper we exploit this asset and propose a new solution based on an auto-encoder with skip connections to reconstruct the occluded part of the face in the optical flow domain. To the best of our knowledge, this is the first proposition to directly reconstruct the movement for facial expression recognition. We validated our approach in the controlled dataset CK+ on which different occlusions were generated. Our experiments show that the proposed method reduce significantly the gap, in terms of recognition accuracy, between occluded and non-occluded situations. We also compare our approach with existing state-of-the-art solutions. In order to lay the basis of a reproducible and fair comparison in the future, we also propose a new experimental protocol that includes occlusion generation and reconstruction evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执意完成签到 ,获得积分10
1秒前
故意的怜晴完成签到 ,获得积分10
3秒前
张朝程完成签到,获得积分10
3秒前
不扯先生完成签到,获得积分20
3秒前
科研通AI2S应助bastien采纳,获得10
4秒前
吃猫的鱼完成签到,获得积分10
6秒前
细心的代天完成签到 ,获得积分10
8秒前
duoduo完成签到,获得积分10
10秒前
bernie1023完成签到,获得积分10
10秒前
hsrlbc完成签到,获得积分10
12秒前
12秒前
Yang22完成签到,获得积分10
12秒前
平淡访冬完成签到 ,获得积分10
14秒前
matt完成签到,获得积分10
14秒前
luluyang完成签到 ,获得积分10
16秒前
寄云间完成签到 ,获得积分10
18秒前
dddd发布了新的文献求助10
18秒前
Gavin完成签到,获得积分10
18秒前
大喇叭啦啦啦完成签到,获得积分10
21秒前
稳重醉香完成签到,获得积分20
21秒前
22秒前
LL完成签到,获得积分10
23秒前
JYM完成签到,获得积分10
23秒前
追梦人2016完成签到 ,获得积分10
24秒前
xhm完成签到 ,获得积分10
24秒前
duoduozs完成签到,获得积分10
24秒前
蓝莓酱完成签到,获得积分0
24秒前
一年发3篇JACS完成签到,获得积分10
26秒前
26秒前
YY完成签到,获得积分10
26秒前
天天快乐应助科研通管家采纳,获得30
28秒前
思源应助科研通管家采纳,获得10
28秒前
yww完成签到,获得积分10
28秒前
Amy完成签到,获得积分10
28秒前
114555完成签到,获得积分10
30秒前
摸鱼鱼完成签到,获得积分10
32秒前
Shandongdaxiu完成签到 ,获得积分10
33秒前
方赫然完成签到,获得积分10
33秒前
北城完成签到 ,获得积分10
33秒前
努力的学完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150630
求助须知:如何正确求助?哪些是违规求助? 2802187
关于积分的说明 7846295
捐赠科研通 2459463
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628803
版权声明 601757