High-efficiency (>20%) planar carbon-based perovskite solar cells through device configuration engineering

材料科学 能量转换效率 光电子学 平面的 钙钛矿(结构) 电极 纳米技术 碳纤维 结晶 化学工程 化学 复合材料 计算机科学 工程类 物理化学 计算机图形学(图像) 复合数
作者
Huiyin Zhang,Yiming Li,Shan Tan,Zijing Chen,Keke Song,Shixian Huang,Jiangjian Shi,Yanhong Luo,Dongmei Li,Qingbo Meng
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:608: 3151-3158 被引量:55
标识
DOI:10.1016/j.jcis.2021.11.050
摘要

Carbon-based perovskite solar cells (C-PSCs) have attracted widespread research interest because of their excellent stability. However, the power conversion efficiency (PCE) of C-PSCs, especially planar C-PSCs, lags far behind the certified efficiency (25.5%) of metal-based PSCs. The simple architecture of planar C-PSCs imparts stringent requirements for device configuration. In this study, we fabricated high-performance planar C-PSCs through device configuration engineering in terms of the perovskite active layer and carbon electrode. Through the combination of component and additive engineering, the crystallization and absorption profiles of perovskite active layer have been improved, which afforded sufficient photogenerated carriers and decreased nonradiative recombination. Furthermore, the mechanical and physical properties of carbon electrode were evaluated comprehensively to regulate the back-interface contact. Based on the compromise of the flexibility and conductivity of carbon film, an excellent back-interface contact has been formed, which promoted fast interface charge transfer, thereby decreasing interface recombination and improving carrier collection efficiency. Finally, the as-prepared devices achieved a remarkable PCE of up to 20.04%, which is a record-high value for planar C-PSCs. Furthermore, the as-prepared devices exhibited excellent long-term stability. After storage for 1000 h at room temperature and 25% relative humidity without encapsulation, the as-prepared device retained 94% of its initial performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Antony完成签到,获得积分10
1秒前
1秒前
chang完成签到,获得积分10
1秒前
1秒前
2秒前
喜欢玩辅助完成签到,获得积分10
2秒前
3秒前
乐乐应助小茉莉采纳,获得30
3秒前
今后应助周游采纳,获得20
3秒前
脑洞疼应助搞笑5次采纳,获得10
4秒前
4秒前
4秒前
hk完成签到,获得积分10
4秒前
wpr发布了新的文献求助10
4秒前
4秒前
Zz关闭了Zz文献求助
5秒前
5秒前
5秒前
5秒前
花开hhhhhhh发布了新的文献求助10
5秒前
5秒前
ads完成签到,获得积分10
5秒前
6秒前
陈成完成签到,获得积分10
6秒前
rose关注了科研通微信公众号
6秒前
6秒前
吃经济发布了新的文献求助10
7秒前
7秒前
7秒前
光_sun发布了新的文献求助10
8秒前
ldh发布了新的文献求助10
8秒前
8秒前
Marksman497完成签到,获得积分10
8秒前
myn1990发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
在水一方应助ads采纳,获得10
10秒前
ED应助lalala采纳,获得10
10秒前
ED应助lalala采纳,获得10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974559
求助须知:如何正确求助?哪些是违规求助? 3518949
关于积分的说明 11196503
捐赠科研通 3255066
什么是DOI,文献DOI怎么找? 1797673
邀请新用户注册赠送积分活动 877076
科研通“疑难数据库(出版商)”最低求助积分说明 806130