放射基因组学
医学
乳腺癌
肿瘤科
比例危险模型
内科学
接收机工作特性
雌激素受体
数据集
癌症
放射科
无线电技术
统计
数学
作者
Ming Fan,Yue Cui,Chao You,Li Liu,Yajia Gu,Peng Weijun,Qianming Bai,Xin Gao,Lihua Li
出处
期刊:Radiology
[Radiological Society of North America]
日期:2022-03-01
卷期号:302 (3): 516-524
被引量:7
标识
DOI:10.1148/radiol.2021210738
摘要
Background Radiogenomics explores the association between imaging features and genomic assays to uncover relevant prognostic features; however, the prognostic implications of the derived signatures remain unclear. Purpose To identify preoperative radiogenomic signatures of estrogen receptor-positive breast cancer associated with the Oncotype DX recurrence score (RS) and to evaluate whether they are biomarkers for survival and responses to neoadjuvant chemotherapy (NACT). Materials and Methods In this retrospective multicohort study, three data sets were analyzed. The radiogenomic development data set, with preoperative dynamic contrast-enhanced MRI and RS data obtained between January 2016 and October 2019 was used to identify radiogenomic signatures. Prognostic implications of the imaging signatures were assessed by measuring overall survival and recurrence-free survival in the prognostic assessment data set using a multivariable Cox proportional hazards model. The therapeutic implication of the radiogenomic signatures was evaluated by determining their ability to predict the response to NACT using the treatment assessment data set obtained between August 2015 and March 2019. Prediction performance was estimated by using the area under the receiver operating characteristic curve (AUC). Results The final cohorts included a radiogenomic development data set with 130 women (mean age, 52 years ± 10 [standard deviation]), a prognostic assessment data set with 116 women (mean age, 48 years ± 9), and a treatment assessment data set with 135 women (mean age, 50 years ± 11). Radiogenomic signatures (n = 11) of texture and morphologic and statistical features were identified to generate the predicted RS (R2 = 0.33, P < .001). A predicted RS greater than 29.9 was associated with poor overall and recurrence-free survival (P = .001 and P = .007, respectively); predicted RS was greater in women with a good NACT response (30.51 ± 6.92 vs 27.35 ± 4.04 [responders vs nonresponders], P = .001). By combining the predicted RS and complementary features, the model achieved improved performance in prediction of the NACT response (AUC, 0.85; P < .001). Conclusion Radiogenomic signatures associated with genomic assays provide markers of prognosis and treatment in estrogen receptor-positive breast cancer. © RSNA, 2021 Online supplemental material is available for this article.
科研通智能强力驱动
Strongly Powered by AbleSci AI