Radiogenomic Signatures of Oncotype DX Recurrence Score Enable Prediction of Survival in Estrogen Receptor–Positive Breast Cancer: A Multicohort Study

放射基因组学 医学 乳腺癌 肿瘤科 比例危险模型 内科学 接收机工作特性 雌激素受体 数据集 癌症 放射科 无线电技术 统计 数学
作者
Ming Fan,Yue Cui,Chao You,Li Liu,Yajia Gu,Peng Weijun,Qianming Bai,Xin Gao,Lihua Li
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (3): 516-524 被引量:7
标识
DOI:10.1148/radiol.2021210738
摘要

Background Radiogenomics explores the association between imaging features and genomic assays to uncover relevant prognostic features; however, the prognostic implications of the derived signatures remain unclear. Purpose To identify preoperative radiogenomic signatures of estrogen receptor-positive breast cancer associated with the Oncotype DX recurrence score (RS) and to evaluate whether they are biomarkers for survival and responses to neoadjuvant chemotherapy (NACT). Materials and Methods In this retrospective multicohort study, three data sets were analyzed. The radiogenomic development data set, with preoperative dynamic contrast-enhanced MRI and RS data obtained between January 2016 and October 2019 was used to identify radiogenomic signatures. Prognostic implications of the imaging signatures were assessed by measuring overall survival and recurrence-free survival in the prognostic assessment data set using a multivariable Cox proportional hazards model. The therapeutic implication of the radiogenomic signatures was evaluated by determining their ability to predict the response to NACT using the treatment assessment data set obtained between August 2015 and March 2019. Prediction performance was estimated by using the area under the receiver operating characteristic curve (AUC). Results The final cohorts included a radiogenomic development data set with 130 women (mean age, 52 years ± 10 [standard deviation]), a prognostic assessment data set with 116 women (mean age, 48 years ± 9), and a treatment assessment data set with 135 women (mean age, 50 years ± 11). Radiogenomic signatures (n = 11) of texture and morphologic and statistical features were identified to generate the predicted RS (R2 = 0.33, P < .001). A predicted RS greater than 29.9 was associated with poor overall and recurrence-free survival (P = .001 and P = .007, respectively); predicted RS was greater in women with a good NACT response (30.51 ± 6.92 vs 27.35 ± 4.04 [responders vs nonresponders], P = .001). By combining the predicted RS and complementary features, the model achieved improved performance in prediction of the NACT response (AUC, 0.85; P < .001). Conclusion Radiogenomic signatures associated with genomic assays provide markers of prognosis and treatment in estrogen receptor-positive breast cancer. © RSNA, 2021 Online supplemental material is available for this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助AN采纳,获得10
刚刚
豆浆油条发布了新的文献求助10
刚刚
FashionBoy应助熙熙采纳,获得10
1秒前
SciGPT应助可达燊采纳,获得10
1秒前
灵巧的傲柏完成签到,获得积分10
1秒前
1秒前
ZQL发布了新的文献求助10
2秒前
深情安青应助KKKK采纳,获得10
2秒前
只只完成签到,获得积分10
2秒前
研友_Zeg3VL给研友_Zeg3VL的求助进行了留言
2秒前
顾矜应助专注的问寒采纳,获得10
2秒前
3秒前
3秒前
勤奋的代萱完成签到,获得积分10
3秒前
4秒前
jinghuan发布了新的文献求助10
4秒前
小危酱完成签到,获得积分20
4秒前
4秒前
4秒前
852应助行星采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
踏雪寻梅发布了新的文献求助10
6秒前
李健的小迷弟应助caiwenwen采纳,获得10
6秒前
科研通AI6应助丰富的诗槐采纳,获得10
6秒前
科研通AI6应助三木采纳,获得10
6秒前
九个烧卖完成签到,获得积分10
6秒前
Hello应助上岸采纳,获得10
6秒前
luyan发布了新的文献求助10
7秒前
我到了啊发布了新的文献求助10
7秒前
7秒前
TY完成签到,获得积分10
7秒前
Gaodz发布了新的文献求助10
7秒前
8秒前
幽默白竹完成签到,获得积分10
8秒前
9秒前
phy完成签到,获得积分10
9秒前
丘比特应助lgj666采纳,获得10
9秒前
9秒前
magneto发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478