亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiogenomic Signatures of Oncotype DX Recurrence Score Enable Prediction of Survival in Estrogen Receptor–Positive Breast Cancer: A Multicohort Study

放射基因组学 医学 乳腺癌 肿瘤科 比例危险模型 内科学 接收机工作特性 雌激素受体 数据集 癌症 放射科 无线电技术 统计 数学
作者
Ming Fan,Yue Cui,Chao You,Li Liu,Yajia Gu,Peng Weijun,Qianming Bai,Xin Gao,Lihua Li
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (3): 516-524 被引量:7
标识
DOI:10.1148/radiol.2021210738
摘要

Background Radiogenomics explores the association between imaging features and genomic assays to uncover relevant prognostic features; however, the prognostic implications of the derived signatures remain unclear. Purpose To identify preoperative radiogenomic signatures of estrogen receptor-positive breast cancer associated with the Oncotype DX recurrence score (RS) and to evaluate whether they are biomarkers for survival and responses to neoadjuvant chemotherapy (NACT). Materials and Methods In this retrospective multicohort study, three data sets were analyzed. The radiogenomic development data set, with preoperative dynamic contrast-enhanced MRI and RS data obtained between January 2016 and October 2019 was used to identify radiogenomic signatures. Prognostic implications of the imaging signatures were assessed by measuring overall survival and recurrence-free survival in the prognostic assessment data set using a multivariable Cox proportional hazards model. The therapeutic implication of the radiogenomic signatures was evaluated by determining their ability to predict the response to NACT using the treatment assessment data set obtained between August 2015 and March 2019. Prediction performance was estimated by using the area under the receiver operating characteristic curve (AUC). Results The final cohorts included a radiogenomic development data set with 130 women (mean age, 52 years ± 10 [standard deviation]), a prognostic assessment data set with 116 women (mean age, 48 years ± 9), and a treatment assessment data set with 135 women (mean age, 50 years ± 11). Radiogenomic signatures (n = 11) of texture and morphologic and statistical features were identified to generate the predicted RS (R2 = 0.33, P < .001). A predicted RS greater than 29.9 was associated with poor overall and recurrence-free survival (P = .001 and P = .007, respectively); predicted RS was greater in women with a good NACT response (30.51 ± 6.92 vs 27.35 ± 4.04 [responders vs nonresponders], P = .001). By combining the predicted RS and complementary features, the model achieved improved performance in prediction of the NACT response (AUC, 0.85; P < .001). Conclusion Radiogenomic signatures associated with genomic assays provide markers of prognosis and treatment in estrogen receptor-positive breast cancer. © RSNA, 2021 Online supplemental material is available for this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
大国完成签到,获得积分20
4秒前
司空晓山发布了新的文献求助20
7秒前
C_关闭了C_文献求助
15秒前
曹兆发布了新的文献求助100
17秒前
失眠呆呆鱼完成签到 ,获得积分10
27秒前
kluberos完成签到 ,获得积分10
37秒前
42秒前
lvlv完成签到,获得积分10
45秒前
大国发布了新的文献求助10
50秒前
龙卡烧烤店完成签到,获得积分10
55秒前
saflgf完成签到,获得积分10
59秒前
OvO_4577完成签到,获得积分10
1分钟前
脑洞疼应助满意的世界采纳,获得10
1分钟前
汉堡包应助健忘的板凳采纳,获得10
1分钟前
jcksonzhj完成签到,获得积分10
1分钟前
761997580完成签到 ,获得积分10
1分钟前
Criminology34举报wert求助涉嫌违规
1分钟前
1分钟前
1分钟前
自然千山完成签到,获得积分10
1分钟前
斯文败类应助张志超采纳,获得10
1分钟前
1分钟前
共享精神应助waomi采纳,获得10
1分钟前
充电宝应助健忘的板凳采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
老迟到的梦旋完成签到 ,获得积分10
1分钟前
张志超发布了新的文献求助10
1分钟前
C_完成签到,获得积分20
1分钟前
1分钟前
852应助张志超采纳,获得10
1分钟前
一只小锦鲤完成签到 ,获得积分10
1分钟前
斯文败类应助yang采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599690
求助须知:如何正确求助?哪些是违规求助? 4685406
关于积分的说明 14838430
捐赠科研通 4669946
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898