Radiogenomic Signatures of Oncotype DX Recurrence Score Enable Prediction of Survival in Estrogen Receptor–Positive Breast Cancer: A Multicohort Study

放射基因组学 医学 乳腺癌 肿瘤科 比例危险模型 内科学 接收机工作特性 雌激素受体 数据集 癌症 放射科 无线电技术 统计 数学
作者
Ming Fan,Yue Cui,Chao You,Li Liu,Yajia Gu,Peng Weijun,Qianming Bai,Xin Gao,Lihua Li
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (3): 516-524 被引量:7
标识
DOI:10.1148/radiol.2021210738
摘要

Background Radiogenomics explores the association between imaging features and genomic assays to uncover relevant prognostic features; however, the prognostic implications of the derived signatures remain unclear. Purpose To identify preoperative radiogenomic signatures of estrogen receptor-positive breast cancer associated with the Oncotype DX recurrence score (RS) and to evaluate whether they are biomarkers for survival and responses to neoadjuvant chemotherapy (NACT). Materials and Methods In this retrospective multicohort study, three data sets were analyzed. The radiogenomic development data set, with preoperative dynamic contrast-enhanced MRI and RS data obtained between January 2016 and October 2019 was used to identify radiogenomic signatures. Prognostic implications of the imaging signatures were assessed by measuring overall survival and recurrence-free survival in the prognostic assessment data set using a multivariable Cox proportional hazards model. The therapeutic implication of the radiogenomic signatures was evaluated by determining their ability to predict the response to NACT using the treatment assessment data set obtained between August 2015 and March 2019. Prediction performance was estimated by using the area under the receiver operating characteristic curve (AUC). Results The final cohorts included a radiogenomic development data set with 130 women (mean age, 52 years ± 10 [standard deviation]), a prognostic assessment data set with 116 women (mean age, 48 years ± 9), and a treatment assessment data set with 135 women (mean age, 50 years ± 11). Radiogenomic signatures (n = 11) of texture and morphologic and statistical features were identified to generate the predicted RS (R2 = 0.33, P < .001). A predicted RS greater than 29.9 was associated with poor overall and recurrence-free survival (P = .001 and P = .007, respectively); predicted RS was greater in women with a good NACT response (30.51 ± 6.92 vs 27.35 ± 4.04 [responders vs nonresponders], P = .001). By combining the predicted RS and complementary features, the model achieved improved performance in prediction of the NACT response (AUC, 0.85; P < .001). Conclusion Radiogenomic signatures associated with genomic assays provide markers of prognosis and treatment in estrogen receptor-positive breast cancer. © RSNA, 2021 Online supplemental material is available for this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue发布了新的文献求助10
刚刚
善学以致用应助stern采纳,获得10
刚刚
张先生发布了新的文献求助10
2秒前
梨儿萌死完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
跳跃元正发布了新的文献求助10
4秒前
4秒前
xiangjunling完成签到,获得积分10
5秒前
5秒前
pluto应助moya采纳,获得10
7秒前
feng完成签到 ,获得积分10
7秒前
junjunbear完成签到,获得积分10
8秒前
9秒前
负责如蓉发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
na完成签到,获得积分10
12秒前
13秒前
追寻澜完成签到 ,获得积分10
13秒前
Tissl发布了新的文献求助10
15秒前
仵一完成签到,获得积分10
15秒前
16秒前
王W发布了新的文献求助10
16秒前
芜湖完成签到,获得积分10
18秒前
20秒前
丘比特应助棠棠采纳,获得10
20秒前
21秒前
22秒前
24秒前
彭于晏应助xing采纳,获得10
25秒前
Tissl完成签到,获得积分10
25秒前
传奇3应助ZXC采纳,获得10
25秒前
深情安青应助研友_Z3342Z采纳,获得10
26秒前
27秒前
27秒前
大树发布了新的文献求助10
27秒前
曹牛牛完成签到 ,获得积分20
28秒前
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693585
求助须知:如何正确求助?哪些是违规求助? 5093488
关于积分的说明 15212074
捐赠科研通 4850504
什么是DOI,文献DOI怎么找? 2601783
邀请新用户注册赠送积分活动 1553630
关于科研通互助平台的介绍 1511597