Selection of resilient suppliers in manufacturing industries post-COVID-19: implications for economic and social sustainability in emerging economies

选择(遗传算法) 计算机科学 托普西斯 多准则决策分析 亲密度 模糊逻辑 运筹学 弹性(材料科学) 供应商评价 管理科学 供应链 经济 业务 供应链管理 人工智能 数学 营销 热力学 物理 数学分析
作者
Abhijit Majumdar,S. Jeevaraj,K. Mathiyazhagan,Rohit Agrawal
出处
期刊:International Journal of Emerging Markets [Emerald (MCB UP)]
卷期号:18 (10): 3657-3675 被引量:8
标识
DOI:10.1108/ijoem-09-2021-1393
摘要

Purpose Selection of resilient suppliers has attracted the attention of researchers in the past one decade. The devastating effect of COVID-19 in emerging economies has provided great impetus to the selection of resilient suppliers. Under volatile and uncertain business scenarios, supplier selection is often done under imprecise and incomplete information, making the traditional decision-making methods ineffective. The purpose of this paper is to demonstrate the application of a fuzzy decision-making method for resilient supplier selection. Design/methodology/approach A group of three decision makers was considered for evaluating various alternatives (suppliers) based on their performance under different primary, sustainability and resilience criteria. Experts' opinion about each criterion and alternative was captured in linguistic terms and was modelled using fuzzy numbers. Then, an algorithm for solving resilient supplier selection problem based on the trapezoidal intuitionistic fuzzy technique for order preference by similarity to ideal solution (TrIFTOPSIS) was introduced and demonstrated through a case study. Findings A closeness coefficient was used to rank the suppliers based on their distances from intuitionistic fuzzy positive-ideal solution and intuitionistic fuzzy negative-ideal solution. Finally, the proposed fuzzy decision making model was applied to a real problem of supplier selection in the clothing industry. Originality/value The presented TrIFTOPSIS model provides an effective route to prioritise and select resilient suppliers under imprecise and incomplete information. This is the first application of intuitionistic fuzzy multi-criteria decision-making for resilient supplier selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大恐龙的噗噗完成签到,获得积分10
刚刚
1秒前
letter发布了新的文献求助30
1秒前
zho应助123Y采纳,获得10
1秒前
大模型应助可爱的夏青采纳,获得10
3秒前
yunjian1583发布了新的文献求助10
3秒前
五木完成签到,获得积分10
4秒前
天天快乐应助sun采纳,获得10
4秒前
大白兔完成签到 ,获得积分10
4秒前
李小莉0419完成签到 ,获得积分10
4秒前
安静的眼神完成签到,获得积分10
5秒前
6秒前
阔达的丹萱完成签到,获得积分10
8秒前
脑洞疼应助闪闪穆采纳,获得10
9秒前
sun完成签到,获得积分10
10秒前
QUPY发布了新的文献求助10
11秒前
11秒前
ltq发布了新的文献求助10
12秒前
完美世界应助温暖如风采纳,获得10
13秒前
赘婿应助a1313采纳,获得10
14秒前
14秒前
小鱼发布了新的文献求助10
14秒前
Desperate完成签到,获得积分10
15秒前
17秒前
为何如此流浪完成签到,获得积分10
17秒前
sunjianyu完成签到,获得积分10
17秒前
Lu777发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
温暖伟祺完成签到,获得积分10
19秒前
别骂我真的会爽完成签到 ,获得积分10
19秒前
Zero完成签到,获得积分10
19秒前
英俊的铭应助嗯嗯嗯采纳,获得10
19秒前
科研通AI6应助迷人绮波采纳,获得10
20秒前
脑洞疼应助yiyi采纳,获得10
20秒前
洛奇亚完成签到,获得积分10
20秒前
嘿嘿发布了新的文献求助10
20秒前
21秒前
21秒前
文艺鼠标完成签到,获得积分20
21秒前
彩色橘子发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655