Selection of resilient suppliers in manufacturing industries post-COVID-19: implications for economic and social sustainability in emerging economies

选择(遗传算法) 计算机科学 托普西斯 多准则决策分析 亲密度 模糊逻辑 运筹学 弹性(材料科学) 供应商评价 管理科学 供应链 经济 业务 供应链管理 人工智能 数学 营销 热力学 物理 数学分析
作者
Abhijit Majumdar,S. Jeevaraj,K. Mathiyazhagan,Rohit Agrawal
出处
期刊:International Journal of Emerging Markets [Emerald (MCB UP)]
卷期号:18 (10): 3657-3675 被引量:8
标识
DOI:10.1108/ijoem-09-2021-1393
摘要

Purpose Selection of resilient suppliers has attracted the attention of researchers in the past one decade. The devastating effect of COVID-19 in emerging economies has provided great impetus to the selection of resilient suppliers. Under volatile and uncertain business scenarios, supplier selection is often done under imprecise and incomplete information, making the traditional decision-making methods ineffective. The purpose of this paper is to demonstrate the application of a fuzzy decision-making method for resilient supplier selection. Design/methodology/approach A group of three decision makers was considered for evaluating various alternatives (suppliers) based on their performance under different primary, sustainability and resilience criteria. Experts' opinion about each criterion and alternative was captured in linguistic terms and was modelled using fuzzy numbers. Then, an algorithm for solving resilient supplier selection problem based on the trapezoidal intuitionistic fuzzy technique for order preference by similarity to ideal solution (TrIFTOPSIS) was introduced and demonstrated through a case study. Findings A closeness coefficient was used to rank the suppliers based on their distances from intuitionistic fuzzy positive-ideal solution and intuitionistic fuzzy negative-ideal solution. Finally, the proposed fuzzy decision making model was applied to a real problem of supplier selection in the clothing industry. Originality/value The presented TrIFTOPSIS model provides an effective route to prioritise and select resilient suppliers under imprecise and incomplete information. This is the first application of intuitionistic fuzzy multi-criteria decision-making for resilient supplier selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
178180完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
zz发布了新的文献求助10
6秒前
如你所liao完成签到,获得积分10
6秒前
6秒前
快乐听露发布了新的文献求助10
8秒前
在水一方应助Gyr060307采纳,获得10
9秒前
懒熊发布了新的文献求助10
9秒前
mwm621发布了新的文献求助10
9秒前
178180发布了新的文献求助10
10秒前
scilai完成签到 ,获得积分10
10秒前
10秒前
lit完成签到 ,获得积分10
10秒前
yuliuism应助小小果妈采纳,获得20
10秒前
李冲云完成签到,获得积分10
11秒前
无名发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
优秀的问薇完成签到,获得积分20
13秒前
传奇3应助嗨呀采纳,获得10
15秒前
zz完成签到,获得积分10
15秒前
16秒前
科研通AI6.1应助天雨流芳采纳,获得30
17秒前
华仔应助快乐听露采纳,获得10
17秒前
在水一方应助靓丽翩跹采纳,获得10
18秒前
小二郎应助清淮采纳,获得10
19秒前
秋风细细雨完成签到,获得积分10
19秒前
水蜜桃完成签到 ,获得积分10
19秒前
香蕉觅云应助daqisong采纳,获得10
20秒前
20秒前
21秒前
Akim应助鱼鱼鱼采纳,获得10
21秒前
siyuan完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
乐乐应助陌陌采纳,获得10
25秒前
26秒前
小小申发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770841
求助须知:如何正确求助?哪些是违规求助? 5587884
关于积分的说明 15425568
捐赠科研通 4904243
什么是DOI,文献DOI怎么找? 2638612
邀请新用户注册赠送积分活动 1586491
关于科研通互助平台的介绍 1541597