亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning with Domain Generalization

计算机科学 一般化 匹配(统计) 领域(数学分析) 特征(语言学) 代表(政治) 人工智能 班级(哲学) 机器学习 对抗制 特征学习 数据挖掘 数学 政治 数学分析 哲学 语言学 统计 政治学 法学
作者
Liling Zhang,Xinyu Lei,Yichun Shi,Hongyu Huang,Chao Chen
出处
期刊:Cornell University - arXiv 被引量:12
标识
DOI:10.48550/arxiv.2111.10487
摘要

Federated Learning (FL) enables a group of clients to jointly train a machine learning model with the help of a centralized server. Clients do not need to submit their local data to the server during training, and hence the local training data of clients is protected. In FL, distributed clients collect their local data independently, so the dataset of each client may naturally form a distinct source domain. In practice, the model trained over multiple source domains may have poor generalization performance on unseen target domains. To address this issue, we propose FedADG to equip federated learning with domain generalization capability. FedADG employs the federated adversarial learning approach to measure and align the distributions among different source domains via matching each distribution to a reference distribution. The reference distribution is adaptively generated (by accommodating all source domains) to minimize the domain shift distance during alignment. In FedADG, the alignment is fine-grained since each class is aligned independently. In this way, the learned feature representation is supposed to be universal, so it can generalize well on the unseen domains. Intensive experiments on various datasets demonstrate that FedADG has comparable performance with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
DonglinHe发布了新的文献求助10
9秒前
11秒前
21秒前
27秒前
Unicorn完成签到,获得积分10
33秒前
mmr关闭了mmr文献求助
52秒前
Owen应助田峰潇采纳,获得10
53秒前
田様应助Shine采纳,获得10
55秒前
1分钟前
TXZ06完成签到,获得积分10
1分钟前
mmr发布了新的文献求助10
1分钟前
1分钟前
1分钟前
jiya发布了新的文献求助30
1分钟前
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
iorpi完成签到,获得积分10
1分钟前
自信号厂完成签到 ,获得积分0
1分钟前
2分钟前
DonglinHe发布了新的文献求助10
2分钟前
2分钟前
2分钟前
打打应助ryf采纳,获得10
2分钟前
2分钟前
汉堡包应助DonglinHe采纳,获得10
2分钟前
婉莹完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
ryf发布了新的文献求助10
3分钟前
DonglinHe发布了新的文献求助10
3分钟前
CGDGD发布了新的文献求助10
3分钟前
发个15分的完成签到 ,获得积分10
3分钟前
在水一方应助DonglinHe采纳,获得10
3分钟前
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
DonglinHe发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324031
求助须知:如何正确求助?哪些是违规求助? 4465085
关于积分的说明 13894055
捐赠科研通 4356871
什么是DOI,文献DOI怎么找? 2393075
邀请新用户注册赠送积分活动 1386576
关于科研通互助平台的介绍 1356807