材料科学
电解质
锂(药物)
阴极
多硫化物
化学工程
阳极
电催化剂
碳纳米管
纳米技术
碳纤维
硫黄
锂硫电池
电极
电化学
化学
复合材料
物理化学
复合数
工程类
内分泌学
冶金
医学
作者
Jiarui He,Amruth Bhargav,Arumugam Manthiram
标识
DOI:10.1002/aenm.202103204
摘要
Abstract Lithium–sulfur batteries offer the advantage of high energy density at a low cost, but their viability is hindered by the polysulfide shuttle effect, sluggish reaction kinetics, and dendritic Li growth. To address these persistent challenges in a unified manner, a dual‐function, flexible, free‐standing framework by coupling catalytic and lithiophilic 1T′‐MoTe 2 nanosheets with conductive carbon nanotubes (MoTe 2 ‐CNT), which serve as a host for both a sulfur cathode (S/MoTe 2 ‐CNT) and a lithium‐metal anode (MoTe 2 ‐CNT/Li) is presented here. MoTe 2 ‐CNT not only guides a uniform growth of lithium within the framework, but also forms a thin, unique sulfide‐rich solid‐electrolyte interphase (SEI) composed of lithium thiotellurate on the Li surface when paired with a sulfur cathode. This SEI stabilizes Li deposition, suppresses electrolyte decomposition, and prevents Li loss, thereby prolonging cycle life. Full coin cells with a very low negative to positive electrode capacity ratio of ≈2.5 and a high areal capacity of 7.6 mA h cm −2 display 75% capacity retention after 500 cycles. The pouch cells fabricated with MoTe 2 ‐CNT deliver a high capacity of 1533 mA h g −1 and energy density of 319 Wh kg −1 at a low electrolyte‐to‐capacity ratio of ≈2.9 µL [mA h] −1 and a low electrolyte‐to‐sulfur ratio of 4.5 µL mg −1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI