Chemoinformatics and Machine Learning Approaches for Identifying Antiviral Compounds

随机森林 机器学习 人工智能 特征选择 支持向量机 计算机科学 化学信息学 决策树 药物重新定位 分类器(UML) 药物发现 数据挖掘 药品 生物信息学 生物 药理学
作者
Lijo John,Yarasi Soujanya,Hridoy Jyoti Mahanta,G. Narahari Sastry
出处
期刊:Molecular Informatics [Wiley]
卷期号:41 (4): 2100190-2100190 被引量:5
标识
DOI:10.1002/minf.202100190
摘要

Current pandemics propelled research efforts in unprecedented fashion, primarily triggering computational efforts towards new vaccine and drug development as well as drug repurposing. There is an urgent need to design novel drugs with targeted biological activity and minimum adverse reactions that may be useful to manage viral outbreaks. Hence an attempt has been made to develop Machine Learning based predictive models that can be used to assess whether a compound has the potency to be antiviral or not. To this end, a set of 2358 antiviral compounds were compiled from the CAS COVID-19 antiviral SAR dataset whose activity was reported based on IC50 value. A total 1157 two-dimensional molecular descriptors were computed among which, the most highly correlated descriptors were selected using Tree-based, Correlation-based and Mutual information-based feature selection methods. Seven Machine Learning algorithms i. e., Random Forest, XGBoost, Support Vector Machine, KNN, Decision Tree, MLP Classifier and Logistic Regression were benchmarked. The best performance was achieved by the models developed using Random Forest and XGBoost algorithms in all the feature selection methods. The maximum predictive accuracy of both these models was 88 % with internal validation. Whereas, with an external dataset, a maximum accuracy of 93.10 % for XGBoost and 100 % for Random Forest based model was achievable. Furthermore, the study demonstrated scaffold analysis of the molecules as a pragmatic approach to explore the importance of structurally diverse compounds in data driven studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小苏打发布了新的文献求助10
1秒前
1秒前
李健应助佐zzz采纳,获得30
2秒前
许多年以后完成签到,获得积分10
3秒前
3秒前
清脆幻枫发布了新的文献求助10
4秒前
Owen应助波波采纳,获得10
4秒前
4秒前
5秒前
FashionBoy应助believe采纳,获得10
5秒前
丘比特应助卡尔采纳,获得10
5秒前
万诚信发布了新的文献求助10
5秒前
6秒前
Ava应助露似珍珠月似弓采纳,获得10
6秒前
6秒前
科研小白发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
哆啦的空间站应助gao采纳,获得10
8秒前
粗心的电源完成签到,获得积分10
8秒前
9秒前
guo发布了新的文献求助10
9秒前
桐桐应助想人陪采纳,获得10
10秒前
10秒前
思源应助看文献了采纳,获得10
10秒前
12秒前
大牛关注了科研通微信公众号
12秒前
bkagyin应助快来看文献采纳,获得10
12秒前
kk发布了新的文献求助10
12秒前
暴躁的梦发布了新的文献求助10
13秒前
wll完成签到,获得积分20
13秒前
13秒前
vikoel完成签到,获得积分10
13秒前
善学以致用应助霸霸采纳,获得10
13秒前
13秒前
露似珍珠月似弓完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641