Chemoinformatics and Machine Learning Approaches for Identifying Antiviral Compounds

随机森林 机器学习 人工智能 特征选择 支持向量机 计算机科学 化学信息学 决策树 药物重新定位 分类器(UML) 药物发现 数据挖掘 药品 生物信息学 生物 药理学
作者
Lijo John,Yarasi Soujanya,Hridoy Jyoti Mahanta,G. Narahari Sastry
出处
期刊:Molecular Informatics [Wiley]
卷期号:41 (4): 2100190-2100190 被引量:5
标识
DOI:10.1002/minf.202100190
摘要

Current pandemics propelled research efforts in unprecedented fashion, primarily triggering computational efforts towards new vaccine and drug development as well as drug repurposing. There is an urgent need to design novel drugs with targeted biological activity and minimum adverse reactions that may be useful to manage viral outbreaks. Hence an attempt has been made to develop Machine Learning based predictive models that can be used to assess whether a compound has the potency to be antiviral or not. To this end, a set of 2358 antiviral compounds were compiled from the CAS COVID-19 antiviral SAR dataset whose activity was reported based on IC50 value. A total 1157 two-dimensional molecular descriptors were computed among which, the most highly correlated descriptors were selected using Tree-based, Correlation-based and Mutual information-based feature selection methods. Seven Machine Learning algorithms i. e., Random Forest, XGBoost, Support Vector Machine, KNN, Decision Tree, MLP Classifier and Logistic Regression were benchmarked. The best performance was achieved by the models developed using Random Forest and XGBoost algorithms in all the feature selection methods. The maximum predictive accuracy of both these models was 88 % with internal validation. Whereas, with an external dataset, a maximum accuracy of 93.10 % for XGBoost and 100 % for Random Forest based model was achievable. Furthermore, the study demonstrated scaffold analysis of the molecules as a pragmatic approach to explore the importance of structurally diverse compounds in data driven studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李文思完成签到,获得积分10
刚刚
阿楠完成签到 ,获得积分10
刚刚
1秒前
三千年的成长完成签到 ,获得积分10
1秒前
ffyzsl完成签到,获得积分10
2秒前
ycd发布了新的文献求助10
2秒前
搜集达人应助稳重的若雁采纳,获得10
3秒前
release枫完成签到,获得积分10
3秒前
宛宛完成签到,获得积分10
4秒前
4秒前
作文27分完成签到,获得积分10
4秒前
asdzsx完成签到,获得积分10
5秒前
迷人叫兽发布了新的文献求助10
6秒前
Scidog完成签到,获得积分10
6秒前
6秒前
HEIKU应助科研通管家采纳,获得10
7秒前
苏卿应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
Zhai完成签到 ,获得积分10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
坚强亦丝应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
8秒前
苏卿应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得30
8秒前
合适的毛豆完成签到,获得积分10
9秒前
11完成签到 ,获得积分10
10秒前
幽默的忆霜完成签到 ,获得积分10
10秒前
11秒前
所所应助执着的小蘑菇采纳,获得10
14秒前
15秒前
15秒前
感性的寄真完成签到 ,获得积分10
16秒前
吃鲨鱼的小虾米完成签到,获得积分10
17秒前
月亮完成签到,获得积分10
17秒前
17秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165024
求助须知:如何正确求助?哪些是违规求助? 2816112
关于积分的说明 7911373
捐赠科研通 2475753
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370