A Simple Model to Predict Repeat Revascularization After Drug-Eluting Stent Implantation in Patients With Stable Coronary Artery Disease

医学 血运重建 内科学 冠状动脉疾病 心脏病学 药物洗脱支架 心绞痛 逻辑回归 一致性 置信区间 心肌梗塞 不稳定型心绞痛 支架 优势比 外科 放射科 再狭窄
作者
Chunfeng Dai,Zhifeng Yao,Zhangwei Chen,Juying Qian,Junbo Ge
出处
期刊:Angiology [SAGE]
卷期号:73 (6): 557-564 被引量:1
标识
DOI:10.1177/00033197211052133
摘要

Repeat revascularization is still common in the era of drug-eluting stents (DES), especially for non-target lesions. However, few validated models exist to predict the need for revascularization. We aimed to develop and validate an easy-to-use predictive model for repeat revascularization after DES implantation in patients with stable coronary artery disease (CAD). A total of 1,653 stable CAD patients with angiographic follow-up after DES implantation were consecutively enrolled. Split-sample testing was adopted to develop and validate the model. In the training set, male, diabetes, number of target lesions, occlusion lesion, number of non-target lesions, recurrent angina, suboptimal low density lipoprotein-cholesterol level, and high lipoprotein (a) level were independent predictors of repeat revascularization using logistic regression analyses. The established model (Model 1) yielded a bias-corrected concordance index of 0.700 (95% confidence interval: 0.667 to 0.735), with good calibration. It also performed well in the validation set. Compared with the traditional empirical model only including recurrent angina (Model 2), Model 1 had better discriminative ability and clinical usefulness. In conclusion, we established and validated a simple model including 8 easily accessible variables to predict repeat revascularization after DES implantation in stable CAD patients, contributing to better risk stratification, decision making, and patient consultation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿桓完成签到 ,获得积分10
刚刚
heyanrt完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
臧为发布了新的文献求助10
1秒前
悠悠发布了新的文献求助10
2秒前
神麒小雪发布了新的文献求助10
3秒前
3秒前
shhoing应助ffcongee采纳,获得10
4秒前
jam完成签到,获得积分10
4秒前
Senny完成签到 ,获得积分10
4秒前
6秒前
爆米花应助上善若水采纳,获得10
6秒前
青橙子发布了新的文献求助10
8秒前
8秒前
11秒前
灌汤大笼包完成签到,获得积分10
12秒前
wkx发布了新的文献求助20
12秒前
13秒前
14秒前
14秒前
梨子发布了新的文献求助20
14秒前
墨酒子完成签到,获得积分10
16秒前
沉静电灯胆完成签到,获得积分20
16秒前
童diedie完成签到,获得积分10
16秒前
萨沙小土豆完成签到,获得积分20
17秒前
会飞的木鱼完成签到,获得积分10
17秒前
Atopos发布了新的文献求助10
18秒前
19秒前
20秒前
22秒前
23秒前
哦哦哦哦哦关注了科研通微信公众号
25秒前
25秒前
kanglan完成签到,获得积分10
26秒前
CodeCraft应助aliu采纳,获得30
26秒前
安琦发布了新的文献求助10
26秒前
60岁刚当博导完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536474
求助须知:如何正确求助?哪些是违规求助? 4624146
关于积分的说明 14590801
捐赠科研通 4564532
什么是DOI,文献DOI怎么找? 2501843
邀请新用户注册赠送积分活动 1480597
关于科研通互助平台的介绍 1451838