Dynamic 18F-FDG Total Body PET Imaging as a Predictive Marker of Induction Chemo-Immunotherapy Followed by Concurrent Chemoradiotherapy Response in Locally Advanced Non-Small Cell Lung Cancer

医学 肺癌 核医学 放化疗 淋巴结 内科学 标准摄取值 正电子发射断层摄影术 前瞻性队列研究 肿瘤科 放射科
作者
Huanliang Liu,B. Qiu,Dawei Wang,Xiang Zhang,Ying Zhou,Qunxing Li,Chu Chu,FangJie Liu,NaiBin Chen,Nan Hu,Xin-Lei Ai,JinYu Guo,Wei Fan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3): e445-e445
标识
DOI:10.1016/j.ijrobp.2021.07.1257
摘要

Purpose/Objective(s)

The purpose of this study was to evaluate the efficacy of dynamic 18F-FDG total body PET imaging as a predictive maker of induction chemo-immunotherapy followed by concurrent chemoradiotherapy (CCRT) response in locally advanced non-small cell lung cancer (LA-NSCLC) by a prospective study.

Materials/Methods

Stage IIIA-IIIC NSCLC patients were prospectively enrolled in a prospective total body PETCT study (NCT04654234, GASTO-1067) and a randomized phase II clinical trial (NCT04085250) between September 2020 and December 2020. Patients underwent a dynamic total-body 18F-FDG PET/CT scan before any treatment, after 2 cycles of induction chemo-immunotherapy (docetaxel + cisplatin + nivolumab), then after CCRT. The primary lung tumor, metastatic regional lymph node and inflammatory lymph node before and after treatment were manually delineated by a nuclear medicine physician and a radiation oncologist. Total Body PET was acquired between 0 – 60 mins after the injection of FDG from the subject's feet. Patients was separated into high dynamic FDG metabolic (H-DFM) group and low DFM(L-DFM) group by the scatter plot of SUV-mean and Ki-mean of baseline scan for primary lung tumor. We compared lesion heterogeneity and different image-derived PET metrics including the metabolic tumor volume (MTV), SUV total lesion glycolysis (SUV-TLG), Patlak-derived influx rate constant (Ki) TLG (Ki-TLG).

Results

Fifteen patients completed three scans (before treatment, after induction chemo-immunotherapy, after CCRT). Eight patients were in H-DFM group and 7 in L-DFM group by baseline scan. Patients in H-DFM group had significant decreased levels of MTV (P < 0.001), SUV-TLG (P < 0.001) and Ki-TLG (P < 0.001) both in primary lung tumor and metastatic lymph node by the induction chemo-immunotherapy and CCRT. However, patients in L-DFM group only had a significant reduction of MTV in primary lung tumor (P < 0.05). There was no significant difference in the MTV of metastatic lymph node (P > 0.5), the SUV-TLG (P > 0.5) and Ki-TLG (P > 0.5) of primary lung tumor and metastatic lymph node during the treatment course in L-DFM group.

Conclusion

Patients in H-DFM group had the better treatment response of induction chemo-immunotherapy and CCRT with significant decreased levels of MTV, SUV-TLG and Ki-TLG. Dynamic 18F-FDG Total body PET Imaging could be regarded as a potential predictive marker of induction chemo-immunotherapy and CCRT response in the setting of LA-NSCLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在精神病院很没精神完成签到,获得积分10
1秒前
情怀应助ayuelei采纳,获得10
1秒前
专注的问寒应助研友_n0kqxL采纳,获得10
3秒前
田様应助wzh采纳,获得10
3秒前
刘十三完成签到,获得积分10
3秒前
长情藏今完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
彭于晏应助longer采纳,获得10
7秒前
7秒前
9秒前
9秒前
无奈又晴完成签到,获得积分10
9秒前
wzh完成签到,获得积分10
9秒前
10秒前
李健应助乐乐采纳,获得30
10秒前
晓宇发布了新的文献求助10
10秒前
沉静冰夏完成签到,获得积分10
10秒前
科研通AI6应助读书的时候采纳,获得10
11秒前
桐桐应助温柔发卡采纳,获得10
12秒前
Yuanyuan发布了新的文献求助10
12秒前
12秒前
14秒前
优美紫槐发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
因几完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助30
15秒前
15秒前
16秒前
深情安青应助manjusaka采纳,获得10
16秒前
17秒前
隐形曼青应助MANI采纳,获得10
17秒前
咸鱼发布了新的文献求助10
17秒前
18秒前
fy发布了新的文献求助10
18秒前
18秒前
缓慢的含海完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172