SP-RAN: Self-Paced Residual Aggregated Network for Solar Panel Mapping in Weakly Labeled Aerial Images

计算机科学 残余物 可靠性(半导体) 人工智能 边界判定 光学(聚焦) 数据挖掘 模式识别(心理学) 对象(语法) 方案(数学) 特征提取 深度学习 遥感 数学 功率(物理) 算法 地质学 数学分析 物理 光学 分类器(UML) 量子力学
作者
Jue Zhang,Xiuping Jia,Jiankun Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:5
标识
DOI:10.1109/tgrs.2021.3123268
摘要

With the rapid development of the solar distribution, solar panel mapping is becoming increasingly valuable to decision-makers. Weakly supervised methods have been developed to reduce the cost in training sample collection, and the most successful ones follow the alternative training scheme, which first generates coarse object localizations as pseudo labels (PLs) and then utilizes these PLs to train an end-to-end network for object extraction. As remote sensing images are typically characterized by multiple occurrences of objects and complicated backgrounds, the alternative training scheme suffers from low mapping accuracy and deficient boundary maintenance due to the varying quality of PLs. In this article, we focus on addressing these problems by adaptively adjusting the contributions of quality-varying PLs and propose a novel self-paced residual aggregated network (SP-RAN) for solar panel mapping. Specifically, with the initial PLs generated by gradient-weighted class activation mapping, a residual aggregated network is designed for target mapping with special consideration for the capability in producing complete and well-shaped mapping results. Considering the inconsistent quality of PLs, an effective confidence-aware (CA) loss is developed to emphasize the contribution of high-quality PLs and alleviate the negative impacts brought by the bad-quality ones in the training phase. Moreover, to concentrate on boundary maintenance, a novel self-paced label correction (SP-LC) strategy is proposed to selectively update PLs by considering their reliability. Extensive experimental comparisons with state-of-the-art methods and ablation study on two aerial datasets and a remote sensing dataset demonstrate the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助QP34采纳,获得10
刚刚
852应助甜蜜代玉采纳,获得10
刚刚
Mask发布了新的文献求助10
刚刚
刚刚
FashionBoy应助rosy采纳,获得10
1秒前
章九里发布了新的文献求助10
1秒前
timemaster666发布了新的文献求助10
1秒前
小菜鸡一枚完成签到,获得积分10
1秒前
西瓜完成签到 ,获得积分10
3秒前
香蕉觅云应助Fjj采纳,获得10
3秒前
3秒前
华子的五A替身完成签到,获得积分10
4秒前
传奇3应助青豆采纳,获得10
4秒前
濮阳思远发布了新的文献求助10
4秒前
4秒前
上官若男应助Hshi采纳,获得10
6秒前
6秒前
小鱼干完成签到,获得积分10
6秒前
6秒前
在水一方应助研友_ZlPVzZ采纳,获得10
7秒前
曾经的妍发布了新的文献求助10
7秒前
7秒前
7秒前
DQ2pi完成签到,获得积分10
8秒前
韶孤容发布了新的文献求助10
8秒前
whb825258发布了新的文献求助10
9秒前
mmol发布了新的文献求助20
9秒前
卜懂得完成签到,获得积分10
9秒前
cai完成签到,获得积分10
10秒前
10秒前
微笑完成签到,获得积分10
11秒前
11秒前
资紫丝发布了新的文献求助20
11秒前
情怀应助小鱼干采纳,获得10
11秒前
11秒前
11秒前
11秒前
Owen应助明理的夏岚采纳,获得10
11秒前
11秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123951
求助须知:如何正确求助?哪些是违规求助? 2774359
关于积分的说明 7722160
捐赠科研通 2429940
什么是DOI,文献DOI怎么找? 1290751
科研通“疑难数据库(出版商)”最低求助积分说明 621911
版权声明 600283