The role of spatial ability in mixed reality learning with the HoloLens

混合现实 空间能力 虚拟现实 模式 增强现实 空间学习 人机交互 考试(生物学) 对象(语法) 接口(物质) 心理学 计算机科学 认知 人工智能 神经科学 生物 气泡 并行计算 古生物学 社会学 最大气泡压力法 社会科学
作者
Simon Ho,Pu Liu,Daniela J. Palombo,Todd C. Handy,Claudia Krebs
出处
期刊:Anatomical Sciences Education [Wiley]
卷期号:15 (6): 1074-1085 被引量:9
标识
DOI:10.1002/ase.2146
摘要

The use of mixed reality in science education has been increasing and as such it has become more important to understand how information is learned in these virtual environments. Spatial ability is important in many learning contexts, but especially in neuroanatomy education where learning the locations and spatial relationships between brain regions is paramount. It is currently unclear what role spatial ability plays in mixed reality learning environments, and whether it is different compared to traditional physical environments. To test this, a learning experiment was conducted where students learned neuroanatomy using both mixed reality and a physical plastic model of a brain (N = 27). Spatial ability was assessed and analyzed to determine its effect on performance across the two learning modalities. The results showed that spatial ability facilitated learning in mixed reality (β = 0.21, P = 0.003), but not when using a plastic model (β = 0.08, P = 0.318). A non-significant difference was observed between the modalities in terms of knowledge test performance (d = 0.39, P = 0.052); however, mixed reality was more engaging (d = 0.59, P = 0.005) and learners were more confident in the information they learned compared to using a physical model (d = 0.56, P = 0.007). Overall, these findings suggest that spatial ability is more relevant in virtual learning environments, where the ability to manipulate and interact with an object is diminished or abstracted through a virtual user interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
希望天下0贩的0应助yyh采纳,获得10
1秒前
1秒前
Garry应助Binbin采纳,获得10
2秒前
搜集达人应助何小茶采纳,获得20
3秒前
搜集达人应助刘一刀采纳,获得10
3秒前
3秒前
qc完成签到,获得积分10
4秒前
2799发布了新的文献求助10
4秒前
大个应助濮阳思远采纳,获得10
4秒前
可爱的函函应助濮阳思远采纳,获得10
4秒前
江浪浪完成签到,获得积分0
4秒前
嗳7发布了新的文献求助10
4秒前
路路完成签到,获得积分10
5秒前
loon完成签到,获得积分10
5秒前
6秒前
独特背包完成签到,获得积分10
6秒前
6秒前
米十二发布了新的文献求助10
6秒前
7秒前
云云邶完成签到,获得积分10
7秒前
dsjacn完成签到 ,获得积分10
7秒前
8秒前
唠叨的曼易完成签到,获得积分10
8秒前
长情契完成签到,获得积分10
9秒前
9秒前
10秒前
yyh发布了新的文献求助10
11秒前
yx发布了新的文献求助10
12秒前
huxy完成签到,获得积分10
12秒前
刘一刀发布了新的文献求助10
13秒前
lingyao发布了新的文献求助10
14秒前
桐桐应助符fu采纳,获得10
15秒前
852应助嗳7采纳,获得10
15秒前
16秒前
是容许鸭完成签到 ,获得积分10
16秒前
半芹发布了新的文献求助20
16秒前
帅气之槐发布了新的文献求助30
17秒前
科研通AI2S应助huxy采纳,获得10
17秒前
雪芜发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124336
求助须知:如何正确求助?哪些是违规求助? 2774637
关于积分的说明 7723368
捐赠科研通 2430117
什么是DOI,文献DOI怎么找? 1290937
科研通“疑难数据库(出版商)”最低求助积分说明 621972
版权声明 600297