材料科学
反射损耗
聚吡咯
纳米复合材料
介电损耗
介电常数
复合材料
电介质
微波食品加热
电磁屏蔽
聚合
吸收(声学)
光电子学
聚合物
复合数
物理
量子力学
作者
Jiang Guo,Xu Li,Zhuoran Chen,Jianfeng Zhu,Xianmin Mai,Renbo Wei,Kai Sun,Hu Liu,Yunxia Chen,Nithesh Naik,Zhanhu Guo
标识
DOI:10.1016/j.jmst.2021.08.049
摘要
NiFe2O4/polypyrrole (NiFe2O4/PPy) nanocomposites are prepared by a simple surface-initiated polymerization method and demonstrate negative permittivity in the low frequency regions. These nanocomposites also exhibit significantly enhanced electromagnetic wave (EMW) absorption property in the high frequency regions. Compared with pure PPy, the enhanced negative permittivity is observed in the NiFe2O4/PPy nanocomposites with a NiFe2O4 loading of 5.0, 10.0, 20.0 and 40.0 wt%, indicating the formation of metal-like electrical conducting network in NiFe2O4/PPy nanocomposites. Moreover, the negative permittivity could be tuned by changing the NiFe2O4 loading. The minimum reflection loss (RL) of -40.8 dB is observed in the 40.0 wt% NiFe2O4/PPy composites with a thickness of only 1.9 mm. The effective absorption bandwidth below -10.0 and -20.0 dB reaches 6.08 and 2.08 GHz, respectively. The enhanced EMW absorption performance benefits from the improved independence matching, EMW attenuation capacity, and synergistic effects of conduction loss, dielectric loss (interfacial and dipole polarizations) and magnetic loss (exchange and natural resonances). This research work provides a guidance for the fabrication of nanocomposites with an excellent EMW absorption.
科研通智能强力驱动
Strongly Powered by AbleSci AI