Application of circulating genetically abnormal cells in the diagnosis of early-stage lung cancer

肺癌 医学 接收机工作特性 阶段(地层学) 内科学 癌症 病态的 血液学 疾病 肿瘤科 胃肠病学 病理 放射科 生物 古生物学
作者
Xiaochang Qiu,Haoran Zhang,Yongheng Zhao,Jing Zhao,Yunyan Wan,Dezhi Li,Zhou‐Hong Yao,Dianjie Lin
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:148 (3): 685-695 被引量:10
标识
DOI:10.1007/s00432-021-03648-w
摘要

Lung cancer is the leading cause of cancer-related death worldwide. The early detection of lung cancer is crucial for the diagnosis of this disease. Therefore, an effective and noninvasive method for the early diagnosis of lung cancer is urgently needed.To evaluate the diagnostic performance of circulating genetically abnormal cells (CACs) in early lung cancer, a total of 63 participants who completed CAC detection by Zhuhai SanMed Biotech Inc. and obtained pathological results from January to December 2020 were included in our study; 50 patients had lung cancer and 13 patients had benign lung disease. The levels of lung cancer-related markers in peripheral blood and the chest computed tomography (CT) imaging characteristics of these patients were collected before pathological acquisition.The positive rate of CAC was 90.0% in the lung cancer group and 23.1% in the benign lung disease group, and the difference was statistically significant (P < 0.01). The area under the receiver operating characteristic (ROC) curve of CAC was 0.837, the sensitivity was 90%, and the specificity was 76.9%. The area under the ROC curve and sensitivity were both higher than those of the combined or single serum tumor marker test.This study preliminarily concludes that the CAC test, as a noninvasive test, has high sensitivity and specificity for the early diagnosis of lung cancer. This test is expected to help with the early detection of disease in lung cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨过天晴发布了新的文献求助10
1秒前
dyd完成签到,获得积分10
2秒前
2秒前
e任思完成签到 ,获得积分10
2秒前
郝宝真发布了新的文献求助10
4秒前
4秒前
FashionBoy应助jocelyn采纳,获得10
5秒前
幻夣完成签到 ,获得积分10
6秒前
FashionBoy应助整齐南莲采纳,获得10
6秒前
科研Mayormm完成签到 ,获得积分10
6秒前
7秒前
icewuwu完成签到,获得积分10
7秒前
moonlight发布了新的文献求助10
8秒前
9秒前
转圈晕倒发布了新的文献求助10
9秒前
爆米花应助zoele采纳,获得10
9秒前
喜欢去公园完成签到,获得积分10
10秒前
鲤鱼问雁完成签到,获得积分10
11秒前
777y完成签到,获得积分10
11秒前
科研通AI2S应助笨笨歌曲采纳,获得10
12秒前
纪外绣完成签到,获得积分10
12秒前
13秒前
weiyy完成签到 ,获得积分10
14秒前
高高平蝶发布了新的文献求助10
14秒前
高大小土豆完成签到 ,获得积分10
14秒前
桐桐应助zoele采纳,获得10
15秒前
啊啊啊啊啊完成签到 ,获得积分10
16秒前
17秒前
cocobear完成签到 ,获得积分10
18秒前
18秒前
整齐南莲完成签到,获得积分10
18秒前
不见高山发布了新的文献求助20
20秒前
幻夣关注了科研通微信公众号
20秒前
21秒前
充电宝应助杜兰特工队采纳,获得10
21秒前
WW发布了新的文献求助10
21秒前
22秒前
内向妙梦发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023