Performance Analysis of a Dynamically Power Managed and Event-Based Wireless Sensor Node Enabled by Queue Discipline

排队 事件(粒子物理) 计算机科学 计算机网络 无线传感器网络 节点(物理) 功率(物理) 实时计算 嵌入式系统 工程类 物理 量子力学 结构工程
作者
Rakhee Kallimani,Sridhar Iyer
出处
期刊:International journal of computer networks and applications [EverScience Publications]
卷期号:8 (2): 130-130 被引量:1
标识
DOI:10.22247/ijcna/2021/208893
摘要

In recent years, Wireless Sensor Networks (WSNs) have attracted the attention of researchers in view of providing a system with high performance and low power consumption.The consistent challenge is to address the trade-off between performance and power consumption.Hence, many key performance metrics need to be analysed for the design of an efficient Wireless Sensor Network.Existing power management techniques, when surveyed, have addressed the issue of power and performance of the node but with the limitation on the selection of queue discipline; this motivates our study to analyse the importance on the selection of queue discipline as it majorly plays a vital role in power and performance management.Thus, we developed a Dynamically Power Managed WSN node in MATLAB Simulink depicting the stochastic behaviour of event arrival and performed the analysis on a single server.This article focuses on the study of queue discipline based on M/M/1 queuing theory with a detailed analysis of First In First Out Queue on the performance of an individual WSN node.The innovation of our work is in the detailed analysis of the behaviour of events in the queue.The parameters analysed are waiting time, average length of the event in the queue and the number of events missed the service by the server.The simulation results make it evident that the events when served based on the First Come First Serve basis performs 10% better in terms of missing events in the queue as compared to Last in First Out Discipline.It is also observed that the arrival rate of the events has an impact on the number of missed events and the utilization of the processor; hence we analysed the need to reduce the number of missed events, especially when the arrival of events is fast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助文艺清涟采纳,获得10
1秒前
syiimo完成签到 ,获得积分10
1秒前
宇文天思完成签到,获得积分10
1秒前
暴躁的板栗完成签到,获得积分10
2秒前
3秒前
chorus完成签到 ,获得积分10
3秒前
Wu完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI5应助puyuanting采纳,获得10
7秒前
8秒前
应从安发布了新的文献求助10
8秒前
哇哇哦wawao完成签到,获得积分10
8秒前
甜蜜星星完成签到,获得积分20
9秒前
xingyueli完成签到,获得积分10
10秒前
Yxy发布了新的文献求助10
10秒前
11秒前
12秒前
坚定初柳发布了新的文献求助10
13秒前
fate发布了新的文献求助10
13秒前
科研通AI5应助ZCxiang采纳,获得10
13秒前
汉堡包应助大明采纳,获得10
13秒前
14秒前
今天好好学英语了吗完成签到,获得积分10
14秒前
刘旺林完成签到,获得积分10
14秒前
14秒前
拾个饼完成签到,获得积分10
15秒前
酷酷觅夏完成签到,获得积分10
15秒前
15秒前
16秒前
文艺清涟发布了新的文献求助10
16秒前
wyx完成签到,获得积分20
16秒前
风中的夕阳完成签到,获得积分20
17秒前
哈哈哈发布了新的文献求助10
17秒前
dang_完成签到,获得积分10
18秒前
19秒前
猪猪hero应助科研进化中采纳,获得10
19秒前
LLL发布了新的文献求助10
20秒前
20秒前
奔波儿灞完成签到,获得积分20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554436
求助须知:如何正确求助?哪些是违规求助? 3130265
关于积分的说明 9385733
捐赠科研通 2829510
什么是DOI,文献DOI怎么找? 1555575
邀请新用户注册赠送积分活动 726143
科研通“疑难数据库(出版商)”最低求助积分说明 715478