卤化物
带隙
材料科学
离子
光电子学
化学
铅(地质)
无机化学
地质学
地貌学
有机化学
作者
Yaoyao Li,Yao Lu,Xiaomin Huo,Dong Wei,Juan Meng,Jie Dong,Bo Qiao,Suling Zhao,Zheng Xu,Dandan Song
出处
期刊:RSC Advances
[The Royal Society of Chemistry]
日期:2021-01-01
卷期号:11 (26): 15688-15694
被引量:50
摘要
Bandgap engineering of lead halide perovskite materials is critical to achieve highly efficient and stable perovskite solar cells and color tunable stable perovskite light-emitting diodes. Herein, we propose the use of machine learning as a tool to predict the bandgap of the perovskite materials from their compositions. By learning from the experimental results, machine learning algorithms present reliable performance in predicting the bandgap of the lead halide perovskites. The linear regression model can be used to manually predict the bandgap of the perovskite with the formula of Cs
科研通智能强力驱动
Strongly Powered by AbleSci AI