Dealiased seismic data interpolation using a deep-learning-based prediction-error filter

计算机科学 插值(计算机图形学) 人工神经网络 深度学习 一般化 人工智能 卷积神经网络 滤波器(信号处理) 可解释性 数据集 机器学习 数据挖掘 算法 模式识别(心理学) 数学 运动(物理) 数学分析 计算机视觉
作者
Wenqian Fang,Lihua Fu,Shaoyong Liu,Hongwei Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (4): V317-V328 被引量:25
标识
DOI:10.1190/geo2020-0487.1
摘要

Deep-learning (DL) technology has emerged as a new approach for seismic data interpolation. DL-based methods can automatically learn the mapping between regularly subsampled and complete data from a large training data set. Subsequently, the trained network can be used to directly interpolate new data. Therefore, compared with traditional methods, DL-based methods reduce the manual workload and render the interpolation process efficient and automatic by avoiding the selection of hyperparameters. However, two limitations of DL-based approaches exist. First, the generalization performance of the neural network is inadequate when processing new data with a different structure compared to the training data. Second, the interpretation of the trained networks is very difficult. To overcome these limitations, we have combined the deep neural network and classic prediction-error filter (PEF) methods, proposing a novel seismic data dealiased interpolation framework called prediction-error filters network (PEFNet). The PEFNet designs convolutional neural networks to learn the relationship between the subsampled data and the PEFs. Thus, the filters estimated by the trained network are used for the recovery of missing traces. The learning of filters enables the network to better extract the local dip of seismic data and has a good generalization ability. In addition, PEFNet has the same interpretability as traditional PEF-based methods. The applicability and the effectiveness of our method are demonstrated here by synthetic and field data examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
领导范儿应助小张采纳,获得10
1秒前
2秒前
2秒前
拼搏山槐发布了新的文献求助10
3秒前
QYPANG发布了新的文献求助10
3秒前
3秒前
Suzanne完成签到,获得积分10
3秒前
CR7应助犬狗狗采纳,获得20
3秒前
卡莎发布了新的文献求助10
3秒前
4秒前
乐乐应助成就的雪莲采纳,获得10
4秒前
榛糕李完成签到,获得积分10
4秒前
CodeCraft应助clocksoar采纳,获得10
4秒前
4秒前
Owen应助科研小白发发发采纳,获得10
5秒前
Curry发布了新的文献求助10
6秒前
Brian发布了新的文献求助10
7秒前
7秒前
8秒前
Rondab应助唐唐采纳,获得10
10秒前
10秒前
标致书易完成签到,获得积分10
10秒前
zx1211发布了新的文献求助10
10秒前
FashionBoy应助平安采纳,获得10
10秒前
哈哈哈发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
王小嘻完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
yznfly应助巴不采纳,获得100
13秒前
量子星尘发布了新的文献求助10
14秒前
她与星辰皆失完成签到 ,获得积分10
15秒前
lucky完成签到,获得积分10
15秒前
刘欣怡发布了新的文献求助10
16秒前
可乐完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794