Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI

判别式 人工智能 计算机科学 模式识别(心理学) 深度学习 机器学习
作者
Wenyong Zhu,Liang Sun,Jiashuang Huang,Liangxiu Han,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2354-2366 被引量:177
标识
DOI:10.1109/tmi.2021.3077079
摘要

Structural magnetic resonance imaging (sMRI) is widely used for the brain neurological disease diagnosis, which could reflect the variations of brain. However, due to the local brain atrophy, only a few regions in sMRI scans have obvious structural changes, which are highly correlative with pathological features. Hence, the key challenge of sMRI-based brain disease diagnosis is to enhance the identification of discriminative features. To address this issue, we propose a dual attention multi-instance deep learning network (DA-MIDL) for the early diagnosis of Alzheimer's disease (AD) and its prodromal stage mild cognitive impairment (MCI). Specifically, DA-MIDL consists of three primary components: 1) the Patch-Nets with spatial attention blocks for extracting discriminative features within each sMRI patch whilst enhancing the features of abnormally changed micro-structures in the cerebrum, 2) an attention multi-instance learning (MIL) pooling operation for balancing the relative contribution of each patch and yield a global different weighted representation for the whole brain structure, and 3) an attention-aware global classifier for further learning the integral features and making the AD-related classification decisions. Our proposed DA-MIDL model is evaluated on the baseline sMRI scans of 1689 subjects from two independent datasets (i.e., ADNI and AIBL). The experimental results show that our DA-MIDL model can identify discriminative pathological locations and achieve better classification performance in terms of accuracy and generalizability, compared with several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinshijie完成签到 ,获得积分10
刚刚
coollittlemouse完成签到,获得积分10
刚刚
1秒前
2秒前
星辰大海应助Marco_hxkq采纳,获得10
3秒前
3秒前
4秒前
哇咔咔完成签到,获得积分10
4秒前
若鱼关注了科研通微信公众号
4秒前
淡然觅海完成签到 ,获得积分10
5秒前
2024220513发布了新的文献求助10
6秒前
玩命的谷槐完成签到,获得积分10
9秒前
善学以致用应助陈晓真采纳,获得10
11秒前
在水一方应助liuguohua126采纳,获得10
11秒前
扶余山本完成签到,获得积分10
12秒前
Hermione完成签到,获得积分10
12秒前
大海完成签到,获得积分10
13秒前
13秒前
14秒前
扶余山本发布了新的文献求助10
14秒前
15秒前
nobody完成签到,获得积分10
16秒前
wanci应助深情的雁露采纳,获得10
17秒前
xiaoyan完成签到,获得积分20
17秒前
17秒前
19秒前
20秒前
20秒前
20秒前
头发乱了发布了新的文献求助10
23秒前
李荷月完成签到,获得积分10
24秒前
24秒前
24秒前
风趣翠霜应助哈哈采纳,获得20
24秒前
千空发布了新的文献求助10
26秒前
26秒前
sunflowers发布了新的文献求助10
27秒前
27秒前
热心的十二完成签到 ,获得积分10
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089