Simultaneously estimating surface soil moisture and roughness of bare soils by combining optical and radar data

卫星 遥感 环境科学 表面粗糙度 含水量 雷达 均方误差 表面光洁度 地质学 材料科学 数学 计算机科学 物理 电信 统计 岩土工程 天文 复合材料
作者
Xingming Zheng,Zhuangzhuang Feng,Lei Li,Bingzhe Li,Tao Jiang,Xiaojie Li,Xiaofeng Li,Si Chen
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:100: 102345-102345 被引量:27
标识
DOI:10.1016/j.jag.2021.102345
摘要

Both radar and optical signals are sensitive to the change of surface soil moisture (SSM) and surface roughness properties (such as root mean squared height- RMSH), and the accuracy of retrieved SSM from single radar and optical remote sensing data is influenced by the spatiotemporal change of surface roughness. Here, we attempt to explore a method to simultaneously estimate SSM and RMSH of bare soil by combining optical and radar data, so as to weaken the effect of surface roughness on SSM inversion results. To achieve this goal, two satellite synchronous ground experiments were carried out, collecting 88 sampling plots each with an area of 50 m × 50 m. Radar backscattering coefficient and spectral reflectance are uniformly corrected to a fixed observation direction and solar incident direction respectively, which can eliminate the difference of satellite signal resulted from various sun-satellite geometry. Combining radar backscattering and optical reflectance model, Sentinel-1 and Sentinel-2 data are used to simultaneously retrieve SSM and RMSH of bared soils, and some conclusions are given as below: 1) a strong correlation is observed for (radar and optical) satellite signals and soil surface parameters (SSM and RMSH); 2) a higher accuracy was obtained by the combined use of optical and radar data, indicated by the decreased root mean squared error of retrieved SSM (~0.045 cm3/cm3) and RMSH (~0.8 cm); 3) the further improvement of retrieved SSM and RMSH was achieved by introducing their initial values, revealing that the prior knowledge of soil properties is also beneficial to improve the retrieval accuracy. This study proposed an framework for simultaneous estimation of SSM and RMSH by combining optical and radar data, and its feasibility is verified by experimental data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
lily应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
选波发布了新的文献求助10
1秒前
2秒前
2秒前
Ava应助霸道恒天采纳,获得10
2秒前
科研通AI6应助霸道恒天采纳,获得10
2秒前
传奇3应助霸道恒天采纳,获得10
2秒前
科研通AI6应助霸道恒天采纳,获得10
2秒前
Lucas应助霸道恒天采纳,获得10
2秒前
CipherSage应助霸道恒天采纳,获得10
3秒前
慕青应助霸道恒天采纳,获得10
3秒前
赘婿应助霸道恒天采纳,获得10
3秒前
英姑应助霸道恒天采纳,获得10
3秒前
延胡索发布了新的文献求助10
3秒前
3秒前
kckckckckc完成签到 ,获得积分10
4秒前
Owen应助忧郁寻冬采纳,获得10
5秒前
热心玉兰发布了新的文献求助10
6秒前
割牙龈肉发布了新的文献求助10
7秒前
李李李发布了新的文献求助10
8秒前
浮游应助anwen采纳,获得10
9秒前
斯文败类应助壮壮采纳,获得10
9秒前
Rain应助Wang采纳,获得10
11秒前
12秒前
脑洞疼应助开放青旋采纳,获得30
12秒前
Lucas应助长情胡萝卜采纳,获得30
13秒前
热心玉兰完成签到,获得积分10
14秒前
14秒前
真真发布了新的文献求助10
14秒前
14秒前
共享精神应助小分队采纳,获得10
14秒前
16秒前
高大的冰双完成签到,获得积分10
16秒前
zzm完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336