Enhanced electric-field-induced strains in (K,Na)NbO3 piezoelectrics from heterogeneous structures

材料科学 压电 生物相容性 电介质 掺杂剂 微观结构 电场 纳米技术 陶瓷 铁电性 复合材料 兴奋剂 光电子学 物理 量子力学 冶金
作者
Mao‐Hua Zhang,Qinghua Zhang,Tingting Yu,Geng Li,Hao‐Cheng Thong,Liying Peng,Lisha Liu,Jing Ma,Yang Shen,Zhijian Shen,J. Daniels,Lin Gu,Bing Han,Long‐Qing Chen,Jing‐Feng Li,Fei Li,Ke Wang
出处
期刊:Materials Today [Elsevier]
卷期号:46: 44-53 被引量:55
标识
DOI:10.1016/j.mattod.2021.02.002
摘要

Piezoelectrics exhibit mechanical strain in response to electrical stimuli and vice versa. A high level of electric-field-induced strain with minimal hysteresis is desired for piezoelectric materials when used as actuators. The past two decades have seen extensive research into lead-free piezoelectrics to replace Pb(Zr,Ti)O3 and compositional engineering has been demonstrated to be an effective method to tailor their functional properties. Doped (K,Na)NbO3 (KNN) compositions with elaborate compositional tuning can exhibit enhanced electromechanical properties. However, a balance between enhanced properties and non-toxicity of the dopants should be considered. In this work, we propose to use microstructural engineering to enhance the properties. Based on phase-field simulations, we propose to take advantage of depolarization energies generated by polar-nonpolar interfaces, to increase the contribution of domain wall motion to electric-field-induced strain. Heterogeneous ferroelectric-paraelectric microstructures were introduced into a KNN ceramic via a two-step sintering process. Their presence was characterized by high-resolution transmission electron microscopy. Enhanced reversible domain wall motion was verified by in situ high-energy X-ray diffraction. Electric-field-induced strain is enhanced by 62% and 200% at 25 °C and 150 °C, respectively. Considering lead-free piezoelectrics also represent an emerging class of biomaterials for medical technology, the non-toxicity and biocompatibility of the investigated compositions are examined by in vitro cell viability assays. Our results demonstrate that microstructural engineering is a promising alternative approach to enhance the electric-field-induced strain of lead-free piezoelectrics while maintaining biocompatibility

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weixiao发布了新的文献求助10
2秒前
贪玩灵松发布了新的文献求助10
2秒前
维C完成签到 ,获得积分10
2秒前
3秒前
weihongjuan发布了新的文献求助10
3秒前
3秒前
乱泽华完成签到 ,获得积分10
3秒前
恬恬完成签到,获得积分10
5秒前
ECT完成签到,获得积分10
6秒前
慕青应助董卓小蛮腰采纳,获得10
7秒前
8秒前
科研通AI6应助wz采纳,获得10
9秒前
9秒前
香蕉觅云应助Lucien采纳,获得30
9秒前
9秒前
9秒前
10秒前
Xavier完成签到,获得积分20
10秒前
Criminology34应助海子采纳,获得10
10秒前
11秒前
大白菜完成签到,获得积分10
11秒前
再见一日完成签到,获得积分10
11秒前
11秒前
12秒前
DY完成签到,获得积分0
12秒前
12秒前
ting_jiang完成签到,获得积分10
13秒前
philipa完成签到,获得积分10
13秒前
13秒前
何安发布了新的文献求助10
14秒前
Orange应助松尐采纳,获得10
14秒前
ning完成签到,获得积分10
14秒前
majf发布了新的文献求助10
14秒前
沉默的行云完成签到,获得积分20
15秒前
strongfrog发布了新的文献求助10
15秒前
大模型应助12138采纳,获得10
16秒前
圆子发布了新的文献求助10
17秒前
17秒前
豆本豆发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836