Enhanced electric-field-induced strains in (K,Na)NbO3 piezoelectrics from heterogeneous structures

材料科学 压电 生物相容性 电介质 掺杂剂 微观结构 电场 纳米技术 陶瓷 铁电性 复合材料 兴奋剂 光电子学 物理 量子力学 冶金
作者
Mao‐Hua Zhang,Qinghua Zhang,Tingting Yu,Geng Li,Hao‐Cheng Thong,Liying Peng,Lisha Liu,Jing Ma,Yang Shen,Zhijian Shen,J. Daniels,Lin Gu,Bing Han,Long‐Qing Chen,Jing‐Feng Li,Fei Li,Ke Wang
出处
期刊:Materials Today [Elsevier]
卷期号:46: 44-53 被引量:55
标识
DOI:10.1016/j.mattod.2021.02.002
摘要

Piezoelectrics exhibit mechanical strain in response to electrical stimuli and vice versa. A high level of electric-field-induced strain with minimal hysteresis is desired for piezoelectric materials when used as actuators. The past two decades have seen extensive research into lead-free piezoelectrics to replace Pb(Zr,Ti)O3 and compositional engineering has been demonstrated to be an effective method to tailor their functional properties. Doped (K,Na)NbO3 (KNN) compositions with elaborate compositional tuning can exhibit enhanced electromechanical properties. However, a balance between enhanced properties and non-toxicity of the dopants should be considered. In this work, we propose to use microstructural engineering to enhance the properties. Based on phase-field simulations, we propose to take advantage of depolarization energies generated by polar-nonpolar interfaces, to increase the contribution of domain wall motion to electric-field-induced strain. Heterogeneous ferroelectric-paraelectric microstructures were introduced into a KNN ceramic via a two-step sintering process. Their presence was characterized by high-resolution transmission electron microscopy. Enhanced reversible domain wall motion was verified by in situ high-energy X-ray diffraction. Electric-field-induced strain is enhanced by 62% and 200% at 25 °C and 150 °C, respectively. Considering lead-free piezoelectrics also represent an emerging class of biomaterials for medical technology, the non-toxicity and biocompatibility of the investigated compositions are examined by in vitro cell viability assays. Our results demonstrate that microstructural engineering is a promising alternative approach to enhance the electric-field-induced strain of lead-free piezoelectrics while maintaining biocompatibility

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xie完成签到,获得积分20
1秒前
谦让的鹏煊完成签到,获得积分10
1秒前
lyk2815完成签到,获得积分10
2秒前
2秒前
碧蓝的睫毛完成签到,获得积分10
2秒前
学术地瓜发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助11采纳,获得10
5秒前
慕青应助azorworld6采纳,获得10
5秒前
5秒前
一路向北发布了新的文献求助10
5秒前
黑夜的冰之歌完成签到,获得积分10
5秒前
5秒前
liu发布了新的文献求助10
6秒前
7秒前
7秒前
七点半完成签到,获得积分10
7秒前
Criminology34应助ywhys采纳,获得10
8秒前
orixero应助WDZ采纳,获得10
9秒前
9秒前
降木沉檀完成签到,获得积分10
9秒前
HAOS发布了新的文献求助30
10秒前
归海亦云发布了新的文献求助10
10秒前
天天快乐应助AoAoo采纳,获得10
10秒前
silk发布了新的文献求助10
10秒前
11秒前
用户253182发布了新的文献求助10
11秒前
ZZWSWJ发布了新的文献求助10
11秒前
和谐饼干发布了新的文献求助10
12秒前
学术地瓜完成签到,获得积分10
14秒前
Yangyang发布了新的文献求助200
14秒前
April完成签到,获得积分10
15秒前
糖宝发布了新的文献求助10
15秒前
15秒前
科研小白发布了新的文献求助10
15秒前
初雪完成签到,获得积分20
15秒前
默默平文发布了新的文献求助10
16秒前
17秒前
着急的书本完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299