Phosphorous-doped bimetallic sulfides embedded in heteroatom-doped carbon nanoarrays for flexible all-solid-state supercapacitors

杂原子 材料科学 超级电容器 双金属片 电解质 兴奋剂 纳米技术 电极 电导率 化学工程 功率密度 碳纤维 密度泛函理论 金属 光电子学 电化学 复合材料 有机化学 冶金 物理化学 化学 功率(物理) 计算化学 戒指(化学) 物理 量子力学 复合数 工程类
作者
Shuo Li,Minghao Hua,Yuan Yang,Xiaowen Zheng,Wei Huang,Pengchao Si,Lijie Ci,Jun Lou
出处
期刊:Science China. Materials [Springer Nature]
卷期号:64 (10): 2439-2453 被引量:26
标识
DOI:10.1007/s40843-020-1667-1
摘要

Flexible supercapacitors (SCs) have become a popular research topic due to their extra-long service life, foldability, and wearability. Nevertheless, their low energy density restricts their applications. Here, we synthesized phosphorus-doped bimetallic sulfides embedded in heteroatom-doped (N, S, and P) carbon shells (P-ZCS/HC) using a simple approach to create high-performance flexible electrodes. The three-dimensional architecture made by interlaced nanosheets was preserved, and raised nanoparticles appeared on the rough surface during the annealing operation, increasing the specific surface area and potential exposure to the electrolyte. It is noteworthy that the optimal P-ZCS/HC electrode possessed a remarkable capacity of 1080 C g−1 at 1 A g−1 along with superb cycling stability. These extraordinary properties were primarily caused by plentiful redox reactions, enhanced conductivity, and synergic effects of the P-doped metal sulfides and heteroatom-doped carbon shells. Density functional theory simulations confirmed the good function of the P-doped electrodes and their ability to boost conductivity, improve reactive dynamics, and promote OH− adsorption. Notably, the assembled all-solid-state hybrid SC exhibited a maximum energy density of 62.9 W h kg−1 and a power density of 16 kW kg−1, while being able to maintain 92.0% of its initial capacity after 10,000 cycles. This systematic report provides new insight into the design and synthesis of electrodes with complex components and outstanding structures for the flexible energy field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssx发布了新的文献求助10
1秒前
2秒前
万能图书馆应助TiAmo采纳,获得10
2秒前
森森完成签到,获得积分10
4秒前
IM小红旗发布了新的文献求助10
5秒前
5秒前
5秒前
斯文败类应助鱼猫采纳,获得10
6秒前
共享精神应助简单又夏采纳,获得10
7秒前
7秒前
华仔应助lllooo采纳,获得10
8秒前
xkx101完成签到,获得积分10
9秒前
orixero应助沐风采纳,获得10
9秒前
T_KYG发布了新的文献求助10
10秒前
11秒前
好大的晒发布了新的文献求助10
11秒前
浮游应助st采纳,获得10
12秒前
浮游应助st采纳,获得10
12秒前
Jasper应助危机的雍采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
FashionBoy应助icey采纳,获得10
14秒前
桐桐应助Rgly采纳,获得10
15秒前
Lucas应助子清采纳,获得10
15秒前
要减肥的书蕾关注了科研通微信公众号
15秒前
Akim应助无量采纳,获得10
15秒前
16秒前
华仔应助蘑菇腿采纳,获得10
17秒前
17秒前
香蕉觅云应助TiAmo采纳,获得10
17秒前
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得100
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424545
求助须知:如何正确求助?哪些是违规求助? 4538904
关于积分的说明 14164157
捐赠科研通 4455851
什么是DOI,文献DOI怎么找? 2443924
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412438