Comparison of Different Machine Models Based on Contrast-Enhanced Computed Tomography Radiomic Features to Differentiate High From Low Grade Clear Cell Renal Cell Carcinomas

单变量 逻辑回归 支持向量机 Lasso(编程语言) 决策树 无线电技术 多元统计 数据集 人工智能 肾透明细胞癌 医学 肾细胞癌 决策树模型 多元分析 接收机工作特性 集合(抽象数据类型) 试验装置 计算机科学 放射科 模式识别(心理学) 对比度(视觉) 机器学习 病理 万维网 程序设计语言
作者
Xu Pei,Ping Wang,Jialiang Ren,Xiaoping Yin,Luyao Ma,Yun Wang,Xiaohai Ma,Bu-Lang Gao
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:5
标识
DOI:10.3389/fonc.2021.659969
摘要

This study was to investigate the role of different radiomics models with enhanced computed tomography (CT) scan in differentiating low from high grade renal clear cell carcinomas.CT data of 190 cases with pathologically confirmed renal cell carcinomas were collected and divided into the training set and testing set according to different time periods, with 122 cases in the training set and 68 cases in the testing set. The region of interest (ROI) was delineated layer by layer.A total of 402 radiomics features were extracted for analysis. Six of the radiomic parameters were deemed very valuable by univariate analysis, rank sum test, LASSO cross validation and correlation analysis. From these six features, multivariate logistic regression model, support vector machine (SVM), and decision tree model were established for analysis. The performance of each model was evaluated by AUC value on the ROC curve and decision curve analysis (DCA). Among the three prediction models, the SVM model showed a high predictive efficiency. The AUC values of the training set and the testing set were 0.84 and 0.83, respectively, which were significantly higher than those of the decision tree model and the multivariate logistic regression model. The DCA revealed a better predictive performance in the SVM model that possessed the highest degree of coincidence.Radiomics analysis using the SVM radiomics model has highly efficiency in discriminating high- and low-grade clear cell renal cell carcinomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习的小霸完成签到,获得积分10
2秒前
鲜于元龙完成签到,获得积分10
2秒前
3秒前
鲁西西完成签到,获得积分10
4秒前
liyanglin完成签到 ,获得积分10
4秒前
4秒前
yyx发布了新的文献求助10
5秒前
Muirle发布了新的文献求助10
9秒前
9秒前
迎风竹林下完成签到,获得积分0
9秒前
思源应助鲁西西采纳,获得10
11秒前
la发布了新的文献求助10
11秒前
风中灵应助相忘于江湖采纳,获得20
11秒前
Jasper应助饼大王采纳,获得10
12秒前
安静的思远完成签到,获得积分20
13秒前
千雪发布了新的文献求助10
14秒前
腌黄瓜女士完成签到,获得积分10
14秒前
Muirle完成签到,获得积分10
15秒前
fang发布了新的文献求助10
17秒前
深情安青应助椰子泡芙采纳,获得10
19秒前
21秒前
炜大的我应助qiuxuan100采纳,获得10
22秒前
科研打工人完成签到,获得积分10
22秒前
23秒前
24秒前
端庄千琴完成签到,获得积分10
24秒前
25秒前
多多指教完成签到,获得积分10
26秒前
Muller完成签到,获得积分10
26秒前
汉堡包应助wengi94采纳,获得10
26秒前
树袋熊发布了新的文献求助10
28秒前
英俊的铭应助田振宇采纳,获得10
30秒前
害怕的灰狼关注了科研通微信公众号
32秒前
方琼燕完成签到 ,获得积分10
32秒前
32秒前
传奇3应助fang采纳,获得10
33秒前
33秒前
zxj发布了新的文献求助20
33秒前
33秒前
34秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382813
求助须知:如何正确求助?哪些是违规求助? 2997266
关于积分的说明 8773363
捐赠科研通 2682672
什么是DOI,文献DOI怎么找? 1469272
科研通“疑难数据库(出版商)”最低求助积分说明 679344
邀请新用户注册赠送积分活动 671487