Improving the spatiotemporal fusion accuracy of fractional vegetation cover in agricultural regions by combining vegetation growth models

植被(病理学) 遥感 环境科学 土地覆盖 归一化差异植被指数 时间分辨率 图像分辨率 增强植被指数 均方误差 传感器融合 融合 地理 数学 土地利用 气候变化 计算机科学 统计 地质学 人工智能 工程类 植被指数 物理 哲学 海洋学 病理 土木工程 医学 量子力学 语言学
作者
Guofeng Tao,Kun Jia,Xiangqin Wei,Mu Xia,Bing Wang,Xianhong Xie,Bo Jiang,Yunjun Yao,Xiaolin Zhang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:101: 102362-102362 被引量:8
标识
DOI:10.1016/j.jag.2021.102362
摘要

Spatiotemporal fusion has provided a feasible way to generate fractional vegetation cover (FVC) data with high spatial and temporal resolution. However, when the currently available spatiotemporal fusion methods are applied over agricultural regions, they usually underestimate high FVC values at the peak vegetation growth stage with medium FVC values as base data. This mainly results from inconsistencies in the temporal variations between fine- and coarse-resolution data if substantial temporal changes occur in vegetation. Therefore, a Spatial and Temporal Fusion method combining with Vegetation Growth Models (STF-VGM) was proposed to address this problem in this study, which incorporates vegetation growth models into the fusion process. Unlike other spatiotemporal fusion methods that mainly rely on changes in coarse-resolution data for prediction, STF-VGM fully utilizes available coarse- and fine-resolution time series data, including uncontaminated information in cloud/cloud shadow contaminated images. By establishing vegetation growth models with time series data, a conversion relationship between coarse- and fine-resolution FVC that changes along with the nonlinear vegetation change process can be extracted. STF-VGM makes prediction based on this variable relationship. A typical agricultural region located in the North China Plain was selected as the study area. The validation results indicated that the prediction accuracy for high FVC values was significantly improved using STF-VGM compared to the commonly used Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and Flexible Spatiotemporal DAta Fusion (FSDAF) methods (STF-VGM: coefficient of determination (R2) = 0.9491, root mean square error (RMSE) = 0.0650, average difference (AD) = -0.0092; ESTARFM: R2 = 0.9341, RMSE = 0.1127, AD = -0.0631; FSDAF: R2 = 0.9224, RMSE = 0.1110, AD = -0.0599). The satisfactory performance of STF-VGM was also achieved in predicting FVC values at other vegetation growth stages (early growth stage: R2 = 0.8277, RMSE = 0.0440, AD = 0.0027; rapid growth stage: R2 = 0.9183, RMSE = 0.0844, AD = 0.0500). In addition, STF-VGM also has the potential to improve the spatiotemporal fusion accuracy of other vegetation parameters and vegetation indices, which will be evaluated in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiejie发布了新的文献求助10
刚刚
文静的夜澄完成签到,获得积分10
刚刚
俊熙C发布了新的文献求助10
1秒前
小蝶发布了新的文献求助10
1秒前
2秒前
2秒前
多多发布了新的文献求助10
3秒前
4秒前
孟威完成签到 ,获得积分10
5秒前
欧阳万仇完成签到,获得积分10
5秒前
万能图书馆应助小蝶采纳,获得10
6秒前
ramu发布了新的文献求助10
7秒前
9秒前
小雷发布了新的文献求助10
9秒前
9秒前
Eureka完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助外向的半芹采纳,获得10
13秒前
13秒前
淡然的怜容完成签到,获得积分10
13秒前
酒吧舞男茜茜妈完成签到 ,获得积分10
16秒前
华仔应助飘落采纳,获得10
17秒前
Lucas应助鸭鸭采纳,获得10
18秒前
L2000应助addment采纳,获得100
18秒前
qorchard发布了新的文献求助10
18秒前
dddd完成签到,获得积分20
19秒前
20秒前
22秒前
26秒前
27秒前
28秒前
29秒前
29秒前
婷婷应助吱吱采纳,获得10
30秒前
TL发布了新的文献求助10
30秒前
31秒前
nil发布了新的文献求助10
31秒前
多多完成签到,获得积分10
31秒前
悉一发布了新的文献求助10
32秒前
hhh发布了新的文献求助10
32秒前
594778089发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198