Multi-Modal MRI Image Synthesis via GAN With Multi-Scale Gate Mergence

计算机科学 模态(人机交互) 模式 人工智能 特征(语言学) 情态动词 像素 医学影像学 模式识别(心理学) 图像(数学) 计算机视觉 社会学 化学 高分子化学 哲学 语言学 社会科学
作者
Bo Zhan,Di Li,Xi Wu,Jiliu Zhou,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 17-26 被引量:55
标识
DOI:10.1109/jbhi.2021.3088866
摘要

Multi-modal magnetic resonance imaging (MRI) plays a critical role in clinical diagnosis and treatment nowadays. Each modality of MRI presents its own specific anatomical features which serve as complementary information to other modalities and can provide rich diagnostic information. However, due to the limitations of time consuming and expensive cost, some image sequences of patients may be lost or corrupted, posing an obstacle for accurate diagnosis. Although current multi-modal image synthesis approaches are able to alleviate the issues to some extent, they are still far short of fusing modalities effectively. In light of this, we propose a multi-scale gate mergence based generative adversarial network model, namely MGM-GAN, to synthesize one modality of MRI from others. Notably, we have multiple down-sampling branches corresponding to input modalities to specifically extract their unique features. In contrast to the generic multi-modal fusion approach of averaging or maximizing operations, we introduce a gate mergence (GM) mechanism to automatically learn the weights of different modalities across locations, enhancing the task-related information while suppressing the irrelative information. As such, the feature maps of all the input modalities at each down-sampling level, i.e., multi-scale levels, are integrated via GM module. In addition, both the adversarial loss and the pixel-wise loss, as well as gradient difference loss (GDL) are applied to train the network to produce the desired modality accurately. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art multi-modal image synthesis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxyyxz完成签到,获得积分20
1秒前
慕青应助Blue采纳,获得10
1秒前
dhr发布了新的文献求助30
1秒前
今后应助Colorc采纳,获得10
2秒前
清秀藏今发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助wys3712采纳,获得10
3秒前
机智的寒荷关注了科研通微信公众号
3秒前
科研通AI5应助Gaowenjie采纳,获得10
4秒前
王明慧完成签到 ,获得积分10
5秒前
杏仁与北极星的科研完成签到,获得积分10
5秒前
kekekek完成签到 ,获得积分10
5秒前
李kazuya完成签到 ,获得积分10
6秒前
7秒前
7秒前
mrmr完成签到,获得积分10
8秒前
9秒前
xiaolei001应助dhr采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
wys3712完成签到,获得积分10
10秒前
TE完成签到,获得积分10
10秒前
科研通AI6应助zxyyxz采纳,获得10
11秒前
karo完成签到,获得积分10
11秒前
song完成签到,获得积分10
11秒前
sfc999完成签到,获得积分10
12秒前
13秒前
WANG完成签到,获得积分10
14秒前
15秒前
WANG发布了新的文献求助10
17秒前
漫漫完成签到,获得积分10
19秒前
陈煜发布了新的文献求助10
19秒前
catnipz完成签到,获得积分10
19秒前
小美完成签到 ,获得积分20
20秒前
dhr完成签到,获得积分10
20秒前
20秒前
九九完成签到,获得积分10
21秒前
酷波er应助summing采纳,获得10
21秒前
21秒前
22秒前
贾学美完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641