Multi-Modal MRI Image Synthesis via GAN With Multi-Scale Gate Mergence

计算机科学 模态(人机交互) 模式 人工智能 特征(语言学) 情态动词 像素 医学影像学 模式识别(心理学) 图像(数学) 计算机视觉 社会学 化学 高分子化学 哲学 语言学 社会科学
作者
Bo Zhan,Di Li,Xi Wu,Jiliu Zhou,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 17-26 被引量:77
标识
DOI:10.1109/jbhi.2021.3088866
摘要

Multi-modal magnetic resonance imaging (MRI) plays a critical role in clinical diagnosis and treatment nowadays. Each modality of MRI presents its own specific anatomical features which serve as complementary information to other modalities and can provide rich diagnostic information. However, due to the limitations of time consuming and expensive cost, some image sequences of patients may be lost or corrupted, posing an obstacle for accurate diagnosis. Although current multi-modal image synthesis approaches are able to alleviate the issues to some extent, they are still far short of fusing modalities effectively. In light of this, we propose a multi-scale gate mergence based generative adversarial network model, namely MGM-GAN, to synthesize one modality of MRI from others. Notably, we have multiple down-sampling branches corresponding to input modalities to specifically extract their unique features. In contrast to the generic multi-modal fusion approach of averaging or maximizing operations, we introduce a gate mergence (GM) mechanism to automatically learn the weights of different modalities across locations, enhancing the task-related information while suppressing the irrelative information. As such, the feature maps of all the input modalities at each down-sampling level, i.e., multi-scale levels, are integrated via GM module. In addition, both the adversarial loss and the pixel-wise loss, as well as gradient difference loss (GDL) are applied to train the network to produce the desired modality accurately. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art multi-modal image synthesis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助轻松的尔槐采纳,获得10
刚刚
明明发布了新的文献求助10
刚刚
刚刚
刚刚
ldd发布了新的文献求助10
刚刚
Soda完成签到,获得积分10
1秒前
1秒前
传奇3应助任性的小C采纳,获得10
1秒前
1秒前
1秒前
1秒前
NexusExplorer应助帅玉玉采纳,获得10
2秒前
2秒前
2秒前
哈哈完成签到 ,获得积分10
2秒前
积极南珍发布了新的文献求助10
3秒前
NexusExplorer应助djbj2022采纳,获得10
4秒前
future发布了新的文献求助10
4秒前
lzy发布了新的文献求助10
4秒前
perfumei完成签到,获得积分10
4秒前
4秒前
4秒前
滕侑林发布了新的文献求助10
4秒前
松山小吏完成签到,获得积分10
5秒前
only发布了新的文献求助10
5秒前
CodeCraft应助liminghui采纳,获得10
5秒前
聪明无施完成签到 ,获得积分10
5秒前
sssjjjxx完成签到,获得积分20
6秒前
6秒前
科研通AI6应助XINGR采纳,获得10
7秒前
adobe完成签到,获得积分10
7秒前
tyy完成签到,获得积分10
7秒前
独特的兰发布了新的文献求助10
7秒前
8秒前
heetrans发布了新的文献求助10
9秒前
9秒前
乐乐应助巴木的海采纳,获得10
10秒前
7890733发布了新的文献求助10
10秒前
12秒前
安详的冷安完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468932
求助须知:如何正确求助?哪些是违规求助? 4572214
关于积分的说明 14334335
捐赠科研通 4499055
什么是DOI,文献DOI怎么找? 2464831
邀请新用户注册赠送积分活动 1453392
关于科研通互助平台的介绍 1427961