亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Modal MRI Image Synthesis via GAN With Multi-Scale Gate Mergence

计算机科学 模态(人机交互) 模式 人工智能 特征(语言学) 情态动词 像素 医学影像学 模式识别(心理学) 图像(数学) 计算机视觉 社会学 化学 高分子化学 哲学 语言学 社会科学
作者
Bo Zhan,Di Li,Xi Wu,Jiliu Zhou,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 17-26 被引量:55
标识
DOI:10.1109/jbhi.2021.3088866
摘要

Multi-modal magnetic resonance imaging (MRI) plays a critical role in clinical diagnosis and treatment nowadays. Each modality of MRI presents its own specific anatomical features which serve as complementary information to other modalities and can provide rich diagnostic information. However, due to the limitations of time consuming and expensive cost, some image sequences of patients may be lost or corrupted, posing an obstacle for accurate diagnosis. Although current multi-modal image synthesis approaches are able to alleviate the issues to some extent, they are still far short of fusing modalities effectively. In light of this, we propose a multi-scale gate mergence based generative adversarial network model, namely MGM-GAN, to synthesize one modality of MRI from others. Notably, we have multiple down-sampling branches corresponding to input modalities to specifically extract their unique features. In contrast to the generic multi-modal fusion approach of averaging or maximizing operations, we introduce a gate mergence (GM) mechanism to automatically learn the weights of different modalities across locations, enhancing the task-related information while suppressing the irrelative information. As such, the feature maps of all the input modalities at each down-sampling level, i.e., multi-scale levels, are integrated via GM module. In addition, both the adversarial loss and the pixel-wise loss, as well as gradient difference loss (GDL) are applied to train the network to produce the desired modality accurately. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art multi-modal image synthesis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
14秒前
Tara鱼完成签到,获得积分10
19秒前
20秒前
21秒前
Tara鱼发布了新的文献求助20
24秒前
28秒前
33秒前
33秒前
Ava应助桃子采纳,获得10
41秒前
rnf完成签到,获得积分10
43秒前
852应助英勇的醉蝶采纳,获得10
48秒前
55秒前
好好好发布了新的文献求助10
59秒前
小马甲应助是是是采纳,获得10
59秒前
rnf完成签到,获得积分10
1分钟前
山鸟与鱼不同路完成签到 ,获得积分10
1分钟前
英勇的醉蝶完成签到,获得积分20
1分钟前
优雅冷霜完成签到 ,获得积分10
1分钟前
宝贝丫头完成签到 ,获得积分10
1分钟前
souther完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
桃子发布了新的文献求助10
1分钟前
乐乐发布了新的文献求助10
2分钟前
2分钟前
迷路的台灯完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
欢呼洋葱应助老八采纳,获得10
3分钟前
斯文败类应助迅速易云采纳,获得10
3分钟前
3分钟前
3分钟前
默默完成签到,获得积分10
3分钟前
zqq完成签到,获得积分0
3分钟前
4分钟前
leafye发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466798
求助须知:如何正确求助?哪些是违规求助? 3059583
关于积分的说明 9067131
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896