Multi-Modal MRI Image Synthesis via GAN With Multi-Scale Gate Mergence

计算机科学 模态(人机交互) 模式 人工智能 特征(语言学) 情态动词 像素 医学影像学 模式识别(心理学) 图像(数学) 计算机视觉 社会学 化学 高分子化学 哲学 语言学 社会科学
作者
Bo Zhan,Di Li,Xi Wu,Jiliu Zhou,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 17-26 被引量:55
标识
DOI:10.1109/jbhi.2021.3088866
摘要

Multi-modal magnetic resonance imaging (MRI) plays a critical role in clinical diagnosis and treatment nowadays. Each modality of MRI presents its own specific anatomical features which serve as complementary information to other modalities and can provide rich diagnostic information. However, due to the limitations of time consuming and expensive cost, some image sequences of patients may be lost or corrupted, posing an obstacle for accurate diagnosis. Although current multi-modal image synthesis approaches are able to alleviate the issues to some extent, they are still far short of fusing modalities effectively. In light of this, we propose a multi-scale gate mergence based generative adversarial network model, namely MGM-GAN, to synthesize one modality of MRI from others. Notably, we have multiple down-sampling branches corresponding to input modalities to specifically extract their unique features. In contrast to the generic multi-modal fusion approach of averaging or maximizing operations, we introduce a gate mergence (GM) mechanism to automatically learn the weights of different modalities across locations, enhancing the task-related information while suppressing the irrelative information. As such, the feature maps of all the input modalities at each down-sampling level, i.e., multi-scale levels, are integrated via GM module. In addition, both the adversarial loss and the pixel-wise loss, as well as gradient difference loss (GDL) are applied to train the network to produce the desired modality accurately. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art multi-modal image synthesis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
强子今天读文献了嘛完成签到,获得积分10
1秒前
浮浮世世发布了新的文献求助10
1秒前
1秒前
CTtoF完成签到,获得积分10
1秒前
2秒前
huanger完成签到,获得积分0
3秒前
4秒前
harrison完成签到,获得积分20
4秒前
狂野未来发布了新的文献求助10
5秒前
花露水完成签到,获得积分20
5秒前
5秒前
6秒前
小蘑菇应助咔咔采纳,获得10
8秒前
qzp发布了新的文献求助10
8秒前
leaolf应助称心曼安采纳,获得20
8秒前
顺心的巨人完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
项目多多完成签到,获得积分10
9秒前
9秒前
欢呼的冰蝶完成签到,获得积分10
9秒前
田様应助msy1998采纳,获得10
9秒前
10秒前
drdouxia发布了新的文献求助10
10秒前
老黄鱼完成签到,获得积分10
10秒前
宁人完成签到,获得积分10
10秒前
科研通AI5应助jyyg采纳,获得10
11秒前
蜒栩柚子完成签到 ,获得积分10
11秒前
明亮玉米完成签到,获得积分10
11秒前
我2023发布了新的文献求助10
11秒前
12秒前
harrison关注了科研通微信公众号
13秒前
harrison关注了科研通微信公众号
13秒前
fox完成签到 ,获得积分10
13秒前
李健应助梦玲采纳,获得10
14秒前
朱sq发布了新的文献求助10
14秒前
华仔应助宁人采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513