已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Modal MRI Image Synthesis via GAN With Multi-Scale Gate Mergence

计算机科学 模态(人机交互) 模式 人工智能 特征(语言学) 情态动词 像素 医学影像学 模式识别(心理学) 图像(数学) 计算机视觉 社会科学 语言学 哲学 化学 社会学 高分子化学
作者
Bo Zhan,Di Li,Xi Wu,Jiliu Zhou,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 17-26 被引量:55
标识
DOI:10.1109/jbhi.2021.3088866
摘要

Multi-modal magnetic resonance imaging (MRI) plays a critical role in clinical diagnosis and treatment nowadays. Each modality of MRI presents its own specific anatomical features which serve as complementary information to other modalities and can provide rich diagnostic information. However, due to the limitations of time consuming and expensive cost, some image sequences of patients may be lost or corrupted, posing an obstacle for accurate diagnosis. Although current multi-modal image synthesis approaches are able to alleviate the issues to some extent, they are still far short of fusing modalities effectively. In light of this, we propose a multi-scale gate mergence based generative adversarial network model, namely MGM-GAN, to synthesize one modality of MRI from others. Notably, we have multiple down-sampling branches corresponding to input modalities to specifically extract their unique features. In contrast to the generic multi-modal fusion approach of averaging or maximizing operations, we introduce a gate mergence (GM) mechanism to automatically learn the weights of different modalities across locations, enhancing the task-related information while suppressing the irrelative information. As such, the feature maps of all the input modalities at each down-sampling level, i.e., multi-scale levels, are integrated via GM module. In addition, both the adversarial loss and the pixel-wise loss, as well as gradient difference loss (GDL) are applied to train the network to produce the desired modality accurately. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art multi-modal image synthesis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠无声发布了新的文献求助10
刚刚
科研通AI6应助玛卡巴卡采纳,获得10
3秒前
田様应助玛卡巴卡采纳,获得10
3秒前
小杭76应助玛卡巴卡采纳,获得10
3秒前
爆米花应助玛卡巴卡采纳,获得10
4秒前
Hello应助玛卡巴卡采纳,获得10
4秒前
深情安青应助玛卡巴卡采纳,获得10
4秒前
小杭76应助玛卡巴卡采纳,获得10
4秒前
小杭76应助玛卡巴卡采纳,获得10
4秒前
科目三应助玛卡巴卡采纳,获得10
4秒前
思源应助玛卡巴卡采纳,获得10
4秒前
4秒前
idiom完成签到 ,获得积分10
4秒前
沉静的绿竹完成签到 ,获得积分10
7秒前
希望天下0贩的0应助张涛采纳,获得10
8秒前
9秒前
所所应助玛卡巴卡采纳,获得10
10秒前
Owen应助玛卡巴卡采纳,获得10
10秒前
科研通AI6应助15359015265采纳,获得10
10秒前
星辰大海应助玛卡巴卡采纳,获得10
10秒前
Jasper应助玛卡巴卡采纳,获得10
10秒前
NexusExplorer应助玛卡巴卡采纳,获得10
10秒前
汉堡包应助玛卡巴卡采纳,获得10
11秒前
Akim应助玛卡巴卡采纳,获得10
11秒前
打打应助玛卡巴卡采纳,获得10
11秒前
小杭76应助玛卡巴卡采纳,获得10
11秒前
bkagyin应助玛卡巴卡采纳,获得10
11秒前
12秒前
图图医完成签到,获得积分10
12秒前
14秒前
15秒前
俏皮的安萱完成签到 ,获得积分10
16秒前
RR发布了新的文献求助10
16秒前
啊哦应助玛卡巴卡采纳,获得10
17秒前
17秒前
龅牙苏发布了新的文献求助10
19秒前
beloved完成签到 ,获得积分10
19秒前
20秒前
花花123发布了新的文献求助10
21秒前
科研通AI6应助李琼琼采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434