Online detection of class-imbalanced error-related potentials evoked by motor imagery

脑-机接口 计算机科学 人工智能 模式识别(心理学) 假阳性悖论 特征提取 自回归模型 运动表象 线性判别分析 支持向量机 特征(语言学) 班级(哲学) 机器学习 脑电图 数学 统计 精神科 哲学 语言学 心理学
作者
Quan Liu,Wenhao Zheng,Kun Chen,Li Ma,Qingsong Ai
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046032-046032 被引量:5
标识
DOI:10.1088/1741-2552/abf522
摘要

Objective.Error-related potentials (ErrPs) are spontaneous electroencephalogram signals related to the awareness of erroneous responses within brain domain. ErrPs-based correction mechanisms can be applied to motor imagery-brain-computer interface (MI-BCI) to prevent incorrect actions and ultimately improve the performance of the hybrid BCI. Many studies on ErrPs detection are mostly conducted under offline conditions with poor classification accuracy and the error rates of ErrPs are preset in advance, which is too ideal to apply in realistic applications. In order to solve these problems, a novel method based on adaptive autoregressive (AAR) model and common spatial pattern (CSP) is proposed for ErrPs feature extraction. In addition, an adaptive threshold classification method based spectral regression discriminant analysis (SRDA) is suggested for class-unbalanced ErrPs data to reduce the false positives and false negatives.Approach.As for ErrPs feature extraction, the AAR coefficients in the temporal domain and CSP in the spatial domain are fused. Given that the performance of different subjects' MI tasks is different but stable, and the samples of ErrPs are class-imbalanced, an adaptive threshold based SRDA is suggested for classification. Two datasets are used in this paper. The open public clinical neuroprosthetics and brain interaction (CNBI) dataset is used to validate the performance of the proposed feature extraction algorithm and the real-time data recorded in our self-designed system is used to validate the performance of the proposed classification algorithm under class-imbalanced situations. Different from the pseudo-random paradigm, the ErrPs signals collected in our experiments are all elicited by four-class of online MI-BCI tasks, and the sample distribution is more natural and suitable for practical tests.Main results.The experimental results on the CNBI dataset show that the average accuracy and false positive rate for ErrPs detection are 94.1% and 8.1%, which outperforms methods using features extracted from a single domain. What's more, although the ErrPs induction rate is affected by the performance of subjects' MI-BCI tasks, experimental results on data recorded in the self-designed system prove that the ErrPs classification algorithm based on an adaptive threshold is robust under different ErrPs data distributions. Compared with two other methods, the proposed algorithm has advantages in all three measures which are accuracy, F1-score and false positive rate. Finally, ErrPs detection results were used to prevent wrong actions in a MI-BCI experiment, and it leads to a reduction of the hybrid BCI error rate from 48.9% to 24.3% in online tests.Significance.Both the AAR-CSP fused feature extraction and the adaptive threshold based SRDA classification methods suggested in our work are efficient in improving the ErrPs detection accuracy and reducing the false positives. In addition, by introducing ErrPs to multi-class MI-BCIs, the MI decoding results can be corrected after ErrPs are detected to avoid executing wrong instructions, thereby improving the BCI accuracy and lays the foundation for using MI-BCIs in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
holypeace完成签到 ,获得积分10
刚刚
恰恰发布了新的文献求助30
1秒前
2秒前
感动的梦柏完成签到,获得积分10
2秒前
勤恳剑身发布了新的文献求助10
2秒前
3秒前
LOWRY完成签到,获得积分10
3秒前
Bambi发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
6秒前
一口一个粽子完成签到 ,获得积分10
6秒前
gu完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
9秒前
Mircale发布了新的文献求助10
10秒前
iiiau发布了新的文献求助10
10秒前
小蘑菇应助lili采纳,获得10
10秒前
11秒前
三愿发布了新的文献求助10
12秒前
喜悦冰海发布了新的文献求助10
12秒前
Doloris发布了新的文献求助10
13秒前
樂酉发布了新的文献求助10
14秒前
不准上学发布了新的文献求助10
15秒前
传奇3应助碧蓝的含羞草采纳,获得10
16秒前
脑洞疼应助sanwan采纳,获得10
16秒前
17秒前
傲娇的夜山完成签到,获得积分10
17秒前
19秒前
20秒前
奋斗雅香完成签到 ,获得积分10
21秒前
充电宝应助jrc采纳,获得10
21秒前
丘比特应助aoao采纳,获得10
21秒前
22秒前
赘婿应助Hommand_藏山采纳,获得10
22秒前
b3032560完成签到,获得积分10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3693239
求助须知:如何正确求助?哪些是违规求助? 3243882
关于积分的说明 9845459
捐赠科研通 2955769
什么是DOI,文献DOI怎么找? 1620595
邀请新用户注册赠送积分活动 766609
科研通“疑难数据库(出版商)”最低求助积分说明 740427