Predictive geologic mapping from geophysical data using self-organizing maps: A case study from Baie Verte, Newfoundland, Canada

聚类分析 地质图 自组织映射 地质学 数据挖掘 地质调查 计算机科学 地球物理学 人工智能 地貌学
作者
Angela Carter-McAuslan,Colin G. Farquharson
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (4): B249-B264 被引量:5
标识
DOI:10.1190/geo2020-0756.1
摘要

Self-organizing maps (SOMs) are a type of unsupervised artificial neural networks clustering tool. SOMs are used to cluster large multivariate data sets. They can identify patterns and trends in the geophysical maps of an area and generate proxy geology maps, known as remote predictive mapping. We have applied SOMs to magnetic, radiometric, and gravity data sets compiled from multiple modern and legacy data sources over the Baie Verte Peninsula, Newfoundland, Canada. The regional and local geologic maps available for this area and knowledge from numerous geologic studies has enabled the accuracy of SOM-based predictive mapping to be assessed. Proxy geology maps generated by primary clustering directly from the SOMs and secondary clustering using a k-means approach reproduced many geologic units identified by previous traditional geologic mapping. Of the combinations of data sets tested, the combination of magnetic data, primary radiometric data and their ratios, and Bouguer gravity data gave the best results. We found that using reduced-to-the-pole residual intensity or using the analytic signal as the magnetic data were equally useful. The SOM process was unaffected by gaps in the coverage of some of the data sets. The SOM results could be used as input into k-means clustering because this method requires no gaps in the data. The subsequent k-means clustering resulted in more meaningful proxy geology maps than were created by the SOM alone. In regions where the geology is poorly known, these proxy maps can be useful in targeting where traditional, on-the-ground geologic mapping would be most beneficial, which can be especially useful in parts of the world where access is difficult and expensive.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江边鸟完成签到 ,获得积分10
刚刚
ASUKA完成签到,获得积分10
刚刚
一品真意完成签到 ,获得积分10
1秒前
1秒前
Moriarty完成签到,获得积分10
1秒前
无花果应助罗小罗同学采纳,获得10
2秒前
JUYIN发布了新的文献求助10
2秒前
Zzz完成签到,获得积分10
2秒前
2秒前
空白完成签到,获得积分10
3秒前
活泼的便当完成签到,获得积分10
3秒前
shaor完成签到,获得积分10
3秒前
笑点低怀亦完成签到,获得积分10
4秒前
童年的秋千完成签到,获得积分10
4秒前
子车茗应助寒冷剑愁采纳,获得30
4秒前
5秒前
luo完成签到,获得积分10
5秒前
6秒前
英俊的铭应助七天与采纳,获得10
6秒前
6秒前
两院候选人应助ddd采纳,获得10
6秒前
老八完成签到,获得积分10
7秒前
MM完成签到,获得积分10
8秒前
搞怪书兰完成签到,获得积分10
9秒前
Jisong完成签到,获得积分10
9秒前
mingjie完成签到,获得积分10
9秒前
10秒前
Misty完成签到,获得积分10
10秒前
阿威完成签到,获得积分10
10秒前
lkk完成签到,获得积分10
10秒前
yao chen发布了新的文献求助10
10秒前
怡然的煜城完成签到,获得积分10
11秒前
zzw发布了新的文献求助10
11秒前
堪尔风关注了科研通微信公众号
11秒前
少雄完成签到,获得积分10
11秒前
JUYIN完成签到,获得积分10
12秒前
顾城浪子完成签到,获得积分10
12秒前
研友_8YoVDn完成签到,获得积分10
12秒前
稳重的峻熙完成签到 ,获得积分10
12秒前
孔乙己完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311429
求助须知:如何正确求助?哪些是违规求助? 2944201
关于积分的说明 8517847
捐赠科研通 2619545
什么是DOI,文献DOI怎么找? 1432421
科研通“疑难数据库(出版商)”最低求助积分说明 664655
邀请新用户注册赠送积分活动 649869