On concomitants of order statistics

数学 顺序统计量 独立同分布随机变量 组合数学 统计 分布(数学) 统计的 样本量测定 订单(交换) 多元正态分布 规范化(社会学) 渐近分布 随机变量 多元统计 数学分析 财务 估计员 经济 社会学 人类学
作者
Ke Wang
摘要

Let (Xi, Yi), 1 ≤ i ≤ n, be a sample of size n from an absolutely continuous random vector (X,Y ). Let Xi:n be the ith order statistic of the X-sample and Y[i:n] be its concomitant. We study three problems related to the Y[i:n]’s in this dissertation. The first problem is about the distribution of concomitants of order statistics (COS) in dependent samples. We derive the finite-sample and asymptotic distribution of COS under a specific setting of dependent samples where the X’s form an equally correlated multivariate normal sample. This work extends the available results on the distribution theory of COS in the literature, which usually assumes independent and identically distributed (i.i.d) or independent samples. The second problem we examine is about the distribution of order statistics of subsets of concomitants from i.i.d samples. Specifically, we study the finite-sample and asymptotic distributions of Vs:m and Wt:n−m, where Vs:m is the sth order statistic of the concomitants subset {Y[i:n], i = n−m + 1, . . . , n}, and Wt:n−m is the tth order statistic of the concomitants subset {Y[j:n], j = 1, . . . , n−m}. We show that with appropriate normalization, both Vs:m and Wt:n−m converge in law to normal distributions with a rate of convergence of order n−1/2. We propose a higher order expansion to the marginal distributions of these order statistics that is substantially more accurate than the normal approximation even for moderate sample sizes. Then we derive the finite-sample and asymptotic joint distribution of (Vs:m,Wt:n−m). We apply these results and determine the probability of an event of interest in commonly used selection procedures. We also apply the results to study the power of ii identifying the disease-susceptible gene in two-stage designs for gene-disease association studies. The third problem we consider is about estimating the conditional mean of the response variable (Y ) given that the explanatory variable (X) is at a specific quantile of its distribution. We propose two estimators based on concomitants of order statistics. The first one is a kernel smoothing estimator, and the second one can be thought of as a bootstrap estimator. We study the asymptotic properties of these estimators and compare their finite sample behavior using simulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花完成签到,获得积分10
1秒前
阿QQ发布了新的文献求助30
4秒前
吕布骑狗完成签到,获得积分10
5秒前
5秒前
8秒前
爱学习的超完成签到,获得积分10
11秒前
果果完成签到,获得积分10
12秒前
执着的日记本完成签到 ,获得积分10
13秒前
大模型应助白蓝采纳,获得10
13秒前
优美芷蝶完成签到,获得积分10
15秒前
贪玩手链完成签到 ,获得积分10
16秒前
17秒前
研友_LN7AOn发布了新的文献求助10
19秒前
Fiona完成签到 ,获得积分10
19秒前
JUN关注了科研通微信公众号
21秒前
22秒前
Akim应助Ann采纳,获得10
22秒前
shine完成签到,获得积分10
23秒前
李爱国应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
不配.应助科研通管家采纳,获得20
24秒前
所所应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
烂漫念文应助科研通管家采纳,获得30
24秒前
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
不配.应助科研通管家采纳,获得50
24秒前
搜集达人应助原野小年采纳,获得10
25秒前
dachengzi完成签到,获得积分10
25秒前
29秒前
个性的紫菜应助Ymir采纳,获得10
30秒前
LILI发布了新的文献求助10
30秒前
Ann发布了新的文献求助10
34秒前
斯文败类应助任海军采纳,获得10
35秒前
37秒前
星辰大海应助幸福鱼采纳,获得10
38秒前
HC3完成签到 ,获得积分10
39秒前
Ann完成签到,获得积分10
42秒前
42秒前
JUN发布了新的文献求助10
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194