On concomitants of order statistics

数学 顺序统计量 独立同分布随机变量 组合数学 统计 分布(数学) 统计的 样本量测定 订单(交换) 多元正态分布 规范化(社会学) 渐近分布 随机变量 多元统计 数学分析 财务 估计员 经济 社会学 人类学
作者
Ke Wang
摘要

Let (Xi, Yi), 1 ≤ i ≤ n, be a sample of size n from an absolutely continuous random vector (X,Y ). Let Xi:n be the ith order statistic of the X-sample and Y[i:n] be its concomitant. We study three problems related to the Y[i:n]’s in this dissertation. The first problem is about the distribution of concomitants of order statistics (COS) in dependent samples. We derive the finite-sample and asymptotic distribution of COS under a specific setting of dependent samples where the X’s form an equally correlated multivariate normal sample. This work extends the available results on the distribution theory of COS in the literature, which usually assumes independent and identically distributed (i.i.d) or independent samples. The second problem we examine is about the distribution of order statistics of subsets of concomitants from i.i.d samples. Specifically, we study the finite-sample and asymptotic distributions of Vs:m and Wt:n−m, where Vs:m is the sth order statistic of the concomitants subset {Y[i:n], i = n−m + 1, . . . , n}, and Wt:n−m is the tth order statistic of the concomitants subset {Y[j:n], j = 1, . . . , n−m}. We show that with appropriate normalization, both Vs:m and Wt:n−m converge in law to normal distributions with a rate of convergence of order n−1/2. We propose a higher order expansion to the marginal distributions of these order statistics that is substantially more accurate than the normal approximation even for moderate sample sizes. Then we derive the finite-sample and asymptotic joint distribution of (Vs:m,Wt:n−m). We apply these results and determine the probability of an event of interest in commonly used selection procedures. We also apply the results to study the power of ii identifying the disease-susceptible gene in two-stage designs for gene-disease association studies. The third problem we consider is about estimating the conditional mean of the response variable (Y ) given that the explanatory variable (X) is at a specific quantile of its distribution. We propose two estimators based on concomitants of order statistics. The first one is a kernel smoothing estimator, and the second one can be thought of as a bootstrap estimator. We study the asymptotic properties of these estimators and compare their finite sample behavior using simulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桉完成签到 ,获得积分10
1秒前
风笛完成签到 ,获得积分10
8秒前
cq_2完成签到,获得积分0
14秒前
111完成签到 ,获得积分10
16秒前
炎炎夏无声完成签到 ,获得积分10
19秒前
Hindiii完成签到,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
哈哈哈完成签到 ,获得积分10
30秒前
zndxlsb完成签到,获得积分10
38秒前
龚瑶完成签到 ,获得积分10
39秒前
洸彦完成签到 ,获得积分10
47秒前
48秒前
flyingpig发布了新的文献求助10
49秒前
默默完成签到 ,获得积分10
53秒前
zndxlsb发布了新的文献求助10
55秒前
Research完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
flyingpig发布了新的文献求助10
1分钟前
huanir99发布了新的文献求助80
1分钟前
时光不旧只是满尘灰完成签到 ,获得积分10
1分钟前
xu发布了新的文献求助10
1分钟前
Singularity完成签到,获得积分0
1分钟前
辛勤的喉完成签到 ,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
zozox完成签到 ,获得积分10
1分钟前
等待小丸子完成签到,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
1分钟前
仰望星空发布了新的文献求助10
2分钟前
IShowSpeed完成签到,获得积分10
2分钟前
偷得浮生半日闲完成签到,获得积分10
2分钟前
忆茶戏完成签到 ,获得积分10
2分钟前
carl完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689401
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118